Difference between revisions of "Team:Paris Bettencourt/Overview"

 
(23 intermediate revisions by 4 users not shown)
Line 74: Line 74:
 
     margin-left: auto;
 
     margin-left: auto;
 
     margin-right: auto
 
     margin-right: auto
 +
}
 +
.figureone {
 +
  width: 65%;
 +
  margin: auto;
 +
  display: block;
 +
}
 +
.figuremiddle {
 +
  width: 75%;
 +
  margin: auto;
 +
  display: block;
 +
}
 +
.halfimg {
 +
  width : 50% !important;
 +
  margin-left : 25%;
 
}
 
}
  
Line 86: Line 100:
 
<div class =text1> Life exists in three dimensions but oftentimes, life sciences research remains very flat. Our limitation to control precise behaviour in a 3D space, abstracts what we can do and distances us from in vivo. Having power ful tools in the 3D allows us to both study and control life with more accuracy. </div>
 
<div class =text1> Life exists in three dimensions but oftentimes, life sciences research remains very flat. Our limitation to control precise behaviour in a 3D space, abstracts what we can do and distances us from in vivo. Having power ful tools in the 3D allows us to both study and control life with more accuracy. </div>
  
<div class=text1><img src="https://static.igem.org/mediawiki/2017/0/06/PB_overviewIntro.png"></div>
+
<div class=figureone><img src="https://static.igem.org/mediawiki/2017/0/06/PB_overviewIntro.png"></div>
 
+
</br>
<h1>Applications</h1>
+
 
</div>
 
</div>
 +
<div class=textbody>
 +
<div class=divseparator></div>
  
<div id=applicationmenu>
+
                <div class=text1><h1>A Bacterial 3D printer</h1></div>
<div class=line><a href="#a" onclick=showapplication1() class=buttons></a><a href="#a" onclick=showapplication2() class=buttons></a><a href="#a" onclick=showapplication3() class=buttons></a></div>
+
                <div class=text2>
<div class=line><a href="#a" onclick=showapplication4() class=buttons></a><a href="#a" onclick=showapplication5() class=buttons></a><a href="#a" onclick=showapplication6() class=buttons></a></div>
+
                <div class=text2left>To best demonstrate our 3D control tools, we created a intuitive way to bring our technologies into people’s every day life. We created a bacterial 3D printer, where we developed and characterise optogenetic tools in bacteria to produce a biomaterial when activated. This is a demonstration of our work where we showcase spatial control with a final product. This also allowed us to further characterise biomaterial </div>
 +
              <div class=text2right> production in micro-organisms. We chose to focus on three biomaterials: Calcium Carbonate, Poly-silicate and Poly-hydroalkanoates (PHA). The system also allows us to apply intracellular 3D control, which we achieve thanks to designing synthetic RNA organelles in the cell where local enzyme concentrations are generated. Thus, to perfect our 3D printer we focused on several main axes of research.  </div>
 
</div>
 
</div>
<div class=textbody>
+
<div class=figuremiddle><img src="https://static.igem.org/mediawiki/2017/a/af/PB_overviewfig2.png"></div>
<div id=application1 class=text2>
+
<div class=text2left>The students came up with and developed the idea during brainstorming sessions in the firsts months of the competition, letting the project evolve throughout the summer. All of the designs, constructs and experiments were performed by the students of the 2017 Paris Bettencourt team. </div>
+
<div class=text2right>Instructors and Advisors provided support, advice and feedback when needed. The team was hosted by the CRI lab inside of the Paris-Descartes University. If more than one person is listed, we highlighted the main person responsible</div>
+
</div>
+
<div id=application2 class=text2>
+
<div class=text2left>The students came up with and developed the idea during
+
brainstorming sessions in the firsts months of the competition, letting
+
the project evolve throughout the summer. All of the designs,
+
constructs and experiments were performed by the students of the
+
2017 Paris Bettencourt team. </div>
+
<div class=text2right>Instructors and Advisors provided support, advice and the CRI lab inside of the Paris-Descartes University. If more than one person is listed, we highlighted the main person responsible</div>
+
</div>
+
<div id=application3 class=text2>
+
<div class=text2left>n, letting the project evolve throughout the summer. All of the designs,
+
constructs and experiments were performed by the students of the
+
2017 Paris Bettencourt team.
+
</div>
+
<div class=text2right>Instructors and Advisors provided support, advice and the CRI lab inside of the Paris-Descartes University.
+
If more than one person is listed, we highlighted the main person responsible</div>
+
</div>
+
<div id=application4 class=text2>
+
<div class=text2left>The students came up with and developed the idea during
+
brainstorming sessions in the firsts months of the competition, letting
+
the project evolve throughout the summer. All of the designs,
+
constructs and experiments were performed by the students of the
+
2017 Paris Bettencourt team. </div>
+
<div class=text2right>Instructors and Advisors provided support, advice and feedback when needed. The team was hosted by
+
the CRI lab inside of the Paris-Descartes University.
+
If more than one person is listed, we highlighted the main person responsible</div>
+
</div>
+
<div id=application5 class=text2>
+
<div class=text2left>The students came up with and developed the idea during
+
brainstorming sessions in the firsts months of the competition, letting
+
the project evolve throughout the summer. All of the designs,
+
constructs and experiments were performed by the students of the
+
2017 Paris Bettencourt team. </div>
+
<div class=text2right>Instructors and Advisors provided support, advice and the CRI lab inside of the Paris-Descartes University.
+
If more than one person is listed, we highlighted the main person responsible</div>
+
</div>
+
<div id=application6 class=text2>
+
<div class=text2left>n, letting
+
the project evolve throughout the summer. All of the designs,
+
constructs and experiments were performed by the students of the
+
2017 Paris Bettencourt team. </div>
+
<div class=text2right>Instructors and Advisors provided support, advice and the CRI lab inside of the Paris-Descartes University.
+
If more than one person is listed, we highlighted the main person responsible</div>
+
</div>
+
</div>
+
<div class=textbody>
+
<div class=divseparator></div>
+
<div class=text2>
+
<div class=text2left><img src="https://static.igem.org/mediawiki/2017/2/27/PB_PC_LB_M9_Abosrbance.jpeg"></div>
+
<div class=text2right><h1>A Bacterial 3D printer</h1><div class=text1><img src="https://static.igem.org/mediawiki/2017/0/06/PB_overviewIntro.png">
+
</div>
+
 
<div class=divseparator></div>
 
<div class=divseparator></div>
 
<div class=text2>
 
<div class=text2>
<div class=text2left><h1>Optogenentic Control</h1>RNA is a light cost nucleotide material in the cell,
+
<div class=text2left><h1>Optogenentic Control</h1>
We aim to recreate RNA agglomerations as formed
+
The Medusa optic control system activates bacteria in a target point with two light beams. Thanks to two photoreceptors integrated in an And-Gate logic, only the bacteria located at the intersection of the beams become activated. We implemented two kinds of photoreceptors: a couple of the <a href="https://2017.igem.org/Team:Paris_Bettencourt/Transmembrane_Proteins"><b>classical membrane photosensors</b></a> and two more recent <a href="https://2017.igem.org/Team:Paris_Bettencourt/Transmembrane_Proteins"><b> photocaging fluorescent proteins</b></a>. We processed the inhibitory input of our photosensors thanks to <a href="https://2017.igem.org/Team:Paris_Bettencourt/Logic_Circuit"><b>a newly designed Nor-Gate</b></a> .</div>
in mammalian cells with triple repeat disorders,
+
<div class=text2right><img class=halfimg src="https://static.igem.org/mediawiki/2017/c/ce/Optogenetic_overview.png"></div>
which show liquid phase separation, forming a
+
organelle-like vesicle, where local concentrations of
+
enzymes can be created.</div>
+
<div class=text2right><img src="https://static.igem.org/mediawiki/2017/2/27/PB_PC_LB_M9_Abosrbance.jpeg"></div>
+
 
</div>
 
</div>
 
<div class=divseparator></div>
 
<div class=divseparator></div>
 
<div class=text2>
 
<div class=text2>
<div class=text2left><img src="https://static.igem.org/mediawiki/2017/2/27/PB_PC_LB_M9_Abosrbance.jpeg"></div>
+
<div class=text2left><img class=halfimg src="https://static.igem.org/mediawiki/2017/0/0d/Overview_Biomaterials.png"></div>
<div class=text2right><h1>Biomaterials</h1>RNA is a light cost nucleotide material in the cell,
+
<div class=text2right><h1>Biomaterials</h1>
We aim to recreate RNA agglomerations as formed
+
To demonstrate the power of our control system, we placed the synthesis of three biomaterials downstream of our light sensing circuit. This turns our light controlled bacteria in a 3D-bioprinter able to print <a ref="https://2017.igem.org/Team:Paris_Bettencourt/Biomaterials#header2"><b> bioplastic </b></a> , <a href="https://2017.igem.org/Team:Paris_Bettencourt/Biomaterials#header4"><b> bioglass </b></a>  and, <a href="https://2017.igem.org/Team:Paris_Bettencourt/Biomaterials#header3"><b> limestone </b></a>.
in mammalian cells with triple repeat disorders,
+
 
which show liquid phase separation, forming a
+
</div>
organelle-like vesicle, where local concentrations of
+
enzymes can be created.</div>
+
 
</div>
 
</div>
 
<div class=divseparator></div>
 
<div class=divseparator></div>
Line 176: Line 132:
 
in mammalian cells with triple repeat disorders,
 
in mammalian cells with triple repeat disorders,
 
which show liquid phase separation, forming a
 
which show liquid phase separation, forming a
organelle-like vesicle, where local concentrations of
+
<a href="https://2017.igem.org/Team:Paris_Bettencourt/RNA"><b> organelle-like vesicle</b></a>, where local concentrations of
 
enzymes can be created.</div>
 
enzymes can be created.</div>
<div class=text2right><img src="https://static.igem.org/mediawiki/2017/2/27/PB_PC_LB_M9_Abosrbance.jpeg">
+
<div class=text2right><img class=halfimg src="https://static.igem.org/mediawiki/2017/b/b1/Overview_RNS.png">
 
</div>
 
</div>
</div>
+
</div></div>
</div>
+
 
</body>
 
</body>
  
 
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"></script>
 
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"></script>
  
<script>
 
function showapplication1() {
 
    document.getElementById('application1').style.display = 'block';
 
    document.getElementById('application2').style.display = 'none';
 
    document.getElementById('application3').style.display = 'none';
 
    document.getElementById('application4').style.display = 'none';
 
    document.getElementById('application5').style.display = 'none';
 
    document.getElementById('application6').style.display = 'none';
 
}
 
function showapplication2() {
 
    document.getElementById('application1').style.display = 'none';
 
    document.getElementById('application2').style.display = 'block';
 
    document.getElementById('application3').style.display = 'none';
 
    document.getElementById('application4').style.display = 'none';
 
    document.getElementById('application5').style.display = 'none';
 
    document.getElementById('application6').style.display = 'none';
 
}
 
function showapplication3() {
 
    document.getElementById('application1').style.display = 'none';
 
    document.getElementById('application2').style.display = 'none';
 
    document.getElementById('application3').style.display = 'block';
 
    document.getElementById('application4').style.display = 'none';
 
    document.getElementById('application5').style.display = 'none';
 
    document.getElementById('application6').style.display = 'none';
 
}
 
function showapplication4() {
 
    document.getElementById('application1').style.display = 'none';
 
    document.getElementById('application2').style.display = 'none';
 
    document.getElementById('application3').style.display = 'none';
 
    document.getElementById('application4').style.display = 'block';
 
    document.getElementById('application5').style.display = 'none';
 
    document.getElementById('application6').style.display = 'none';
 
}
 
function showapplication5() {
 
    document.getElementById('application1').style.display = 'none';
 
    document.getElementById('application2').style.display = 'none';
 
    document.getElementById('application3').style.display = 'none';
 
    document.getElementById('application4').style.display = 'none';
 
    document.getElementById('application5').style.display = 'block';
 
    document.getElementById('application6').style.display = 'none';
 
}
 
function showapplication6() {
 
    document.getElementById('application1').style.display = 'none';
 
    document.getElementById('application2').style.display = 'none';
 
    document.getElementById('application3').style.display = 'none';
 
    document.getElementById('application4').style.display = 'none';
 
    document.getElementById('application5').style.display = 'none';
 
    document.getElementById('application6').style.display = 'block';
 
}
 
  
</script>
 
 
</html>
 
</html>
  
  
 
{{Paris_Bettencourt/footer}}
 
{{Paris_Bettencourt/footer}}

Latest revision as of 03:12, 2 November 2017

OVERVIEW

Why do we need 3D control?

Life exists in three dimensions but oftentimes, life sciences research remains very flat. Our limitation to control precise behaviour in a 3D space, abstracts what we can do and distances us from in vivo. Having power ful tools in the 3D allows us to both study and control life with more accuracy.

A Bacterial 3D printer

To best demonstrate our 3D control tools, we created a intuitive way to bring our technologies into people’s every day life. We created a bacterial 3D printer, where we developed and characterise optogenetic tools in bacteria to produce a biomaterial when activated. This is a demonstration of our work where we showcase spatial control with a final product. This also allowed us to further characterise biomaterial
production in micro-organisms. We chose to focus on three biomaterials: Calcium Carbonate, Poly-silicate and Poly-hydroalkanoates (PHA). The system also allows us to apply intracellular 3D control, which we achieve thanks to designing synthetic RNA organelles in the cell where local enzyme concentrations are generated. Thus, to perfect our 3D printer we focused on several main axes of research.

Optogenentic Control

The Medusa optic control system activates bacteria in a target point with two light beams. Thanks to two photoreceptors integrated in an And-Gate logic, only the bacteria located at the intersection of the beams become activated. We implemented two kinds of photoreceptors: a couple of the classical membrane photosensors and two more recent photocaging fluorescent proteins. We processed the inhibitory input of our photosensors thanks to a newly designed Nor-Gate .

Biomaterials

To demonstrate the power of our control system, we placed the synthesis of three biomaterials downstream of our light sensing circuit. This turns our light controlled bacteria in a 3D-bioprinter able to print bioplastic , bioglass and, limestone .

RNA organelle

RNA is a light cost nucleotide material in the cell, We aim to recreate RNA agglomerations as formed in mammalian cells with triple repeat disorders, which show liquid phase separation, forming a organelle-like vesicle, where local concentrations of enzymes can be created.


Centre for Research and Interdisciplinarity (CRI)
Faculty of Medicine Cochin Port-Royal, South wing, 2nd floor
Paris Descartes University
24, rue du Faubourg Saint Jacques
75014 Paris, France
bettencourt.igem2017@gmail.com