Line 7: | Line 7: | ||
<div class="contentbox"> | <div class="contentbox"> | ||
<h1 class="box-heading">Short Description</h1> | <h1 class="box-heading">Short Description</h1> | ||
− | <p>Peptidosomes in combination with <i>Bacillus subtilis</i> offer a perfect platform for enhanced protein overproduction by the means of efficient protein secretion provided through <i>B. subtilis</i> and the easy purification due to the physical separation of bacteria and the end-product in the supernatant facilitated by the Peptidosomes. Naturally, <i>B. subtilis</i> is a strong secretion host and in order to take full advantage of this great potential it is necessary to evaluate all possible combinations of the <i>B. subtilis’ </I> secretion signal peptides and the proteins of interest. Therefore, we developed <b> | + | <p>Peptidosomes in combination with <i>Bacillus subtilis</i> offer a perfect platform for enhanced protein overproduction by the means of efficient protein secretion provided through <i>B. subtilis</i> and the easy purification due to the physical separation of bacteria and the end-product in the supernatant facilitated by the Peptidosomes. Naturally, <i>B. subtilis</i> is a strong secretion host and in order to take full advantage of this great potential it is necessary to evaluate all possible combinations of the <i>B. subtilis’ </I> secretion signal peptides and the proteins of interest. Therefore, we developed the <b>Evaluation Vector (EV)</b> which is a powerful genetic tool containing a multiple cloning site (MCS) specifically designed to easily exchange translational fusions composed of the desired protein and a secretion signal peptide.</p> |
</div> | </div> | ||
Line 19: | Line 19: | ||
<ul class="henristyle"> | <ul class="henristyle"> | ||
<li>Exchangeable promoter region</li> | <li>Exchangeable promoter region</li> | ||
− | <li>Insertion of | + | <li>Insertion of basic or composite parts as expression units</li> |
<li>Fulfilling the RFC10 and RFC25 BioBrick standard</li> | <li>Fulfilling the RFC10 and RFC25 BioBrick standard</li> | ||
<li>Easy cloning and screening procedure in <i>Escherichia coli</i></li> | <li>Easy cloning and screening procedure in <i>Escherichia coli</i></li> | ||
Line 37: | Line 37: | ||
<img src="https://static.igem.org/mediawiki/2017/7/7e/EvaluationVector.png" alt="A scheme explaining the design of the Evaluation Vector."> | <img src="https://static.igem.org/mediawiki/2017/7/7e/EvaluationVector.png" alt="A scheme explaining the design of the Evaluation Vector."> | ||
<figcaption><b>Figure 1: New layout of the multiple cloning site in our Evaluation Vector.</b> The crosses indicate restriction enzyme sites: E= EcoRI, N= NotI, X=XbaI, S= SpeI and P= PstI. Please note: cutting with BsaI will result in an XbaI overhang.</figcaption></figure> | <figcaption><b>Figure 1: New layout of the multiple cloning site in our Evaluation Vector.</b> The crosses indicate restriction enzyme sites: E= EcoRI, N= NotI, X=XbaI, S= SpeI and P= PstI. Please note: cutting with BsaI will result in an XbaI overhang.</figcaption></figure> | ||
− | <p>At first, we removed a BsaI restriction enzyme site on the backbone of the vector by PCR based mutagenesis using primers TM3161 and TM3164 because it was interfering with our design. The confirmed BsaI free vector was then cut with EcoRI and XbaI to insert the Xylose inducible promoter P<sub><i>xylA</sub></i> <a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pubmed/24295448">[1]</a> wich was prior amplified using the | + | <p>At first, we removed a BsaI restriction enzyme site on the backbone of the vector by PCR based mutagenesis using primers TM3161 and TM3164 because it was interfering with our design. The confirmed BsaI free vector was then cut with EcoRI and XbaI to insert the Xylose inducible promoter P<sub><i>xylA</sub></i> <a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pubmed/24295448">[1]</a> wich was prior amplified using the primers iG17P051 and iG17P052 followed by digestion with EcoRI and BsaI (resulting in an XbaI overhang) to maintain the BioBrick prefix in front of the promoter. Next, we had to create an entirely new multiple cloning site (MCS): We synthesized a new RFP based on the sequence of the RFP found in the pSB1C3 backbone. The expression of this RFPsyn2 is still driven by the IPTG inducible P<sub><i>lacI</i></sub> promoter but lacks any restriction enzyme sites interferring with the RFC25 standard. |
</p> | </p> | ||
<figure> | <figure> | ||
Line 67: | Line 67: | ||
</figure> | </figure> | ||
</div> | </div> | ||
− | <p>We constructed the Evaluation Vector (EV) to quickly screen for the secretion of a protein of interest as a composite part containing a specifically/specially designed MCS and transformation success indicators based on the pBS1C backbone <a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pubmed/24295448">[1]</a> (Figure 3). Additionally, this vector can be applied for the expression of any other fusion protein of interest regulated by a promoter of your choice. For more details on the application check out our <a href="https://2017.igem.org/Team:TU_Dresden/Measurement">Signal Peptide Toolbox</a> and <a href= "https://2017.igem.org/Team:TU_Dresden/Project/Secretion">Secretion project</a>.</p> | + | <p>We constructed the <b>Evaluation Vector (EV)</b> to quickly screen for the secretion of a protein of interest as a composite part containing a specifically/specially designed MCS and transformation success indicators based on the pBS1C backbone <a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pubmed/24295448">[1]</a> (Figure 3). Additionally, this vector can be applied for the expression of any other fusion protein of interest regulated by a promoter of your choice. For more details on the application check out our <a href="https://2017.igem.org/Team:TU_Dresden/Measurement">Signal Peptide Toolbox</a> and <a href= "https://2017.igem.org/Team:TU_Dresden/Project/Secretion">Secretion project</a>.</p> |
− | <p> | + | <p>Due to the unique setup of the MCS which provides easy access to powerful cloning, we provide the MCS as a part stored in the pSB1C3 backbone for the iGEM community (<a target="_blank" href="http://parts.igem.org/Part:BBa_K2273107">BioBrick BBa_K2273107</a>).</p> |
<p>As stated above in the Background section of the EV, we aimed for an easy cloning and screening procedure in our cloning host <i>Escherichia coli</i>. To accomplish that, we chose to set the construct RFPsyn2 as placeholder for the N-terminally fused protein and the gene <i>lacZα</i> for the C-terminally fused protein, respectively. Therefore, the blue color of <i>lacZα</i> carrying colonies and thereby X-Gal degrading colonies masks the red color of the RFPsyn2 on X-Gal containing agar plates. However, on not X-Gal containing agar plates, the red color of the RFPsyn2 will be visible. <i> E. coli</i> colonies carrying neither <i>lacZα</i> nor RPFsyn2 will stay whitish as common <i> E. coli</i> colonies (Figure 4). By applying this setup, successfully transformed <i>E. coli</i> colonies can be identified easily, as stated below in the standard operating procedure (SOP) protocol.</p> | <p>As stated above in the Background section of the EV, we aimed for an easy cloning and screening procedure in our cloning host <i>Escherichia coli</i>. To accomplish that, we chose to set the construct RFPsyn2 as placeholder for the N-terminally fused protein and the gene <i>lacZα</i> for the C-terminally fused protein, respectively. Therefore, the blue color of <i>lacZα</i> carrying colonies and thereby X-Gal degrading colonies masks the red color of the RFPsyn2 on X-Gal containing agar plates. However, on not X-Gal containing agar plates, the red color of the RFPsyn2 will be visible. <i> E. coli</i> colonies carrying neither <i>lacZα</i> nor RPFsyn2 will stay whitish as common <i> E. coli</i> colonies (Figure 4). By applying this setup, successfully transformed <i>E. coli</i> colonies can be identified easily, as stated below in the standard operating procedure (SOP) protocol.</p> | ||
<p>Based on our design, we established the following SOP protocol for cloning with the EV.</p> | <p>Based on our design, we established the following SOP protocol for cloning with the EV.</p> | ||
</figure> | </figure> | ||
− | |||
<p> | <p> | ||
<table> | <table> |
Revision as of 09:03, 26 October 2017