Line 35: | Line 35: | ||
<figure> | <figure> | ||
<figure class="makeresponsive floatright" style="width: 65%;"> | <figure class="makeresponsive floatright" style="width: 65%;"> | ||
− | <img src="https://static.igem.org/mediawiki/2017/7/7e/EvaluationVector.png" alt="A scheme explaining the design of the Evaluation Vector."> | + | <img class="zoom" src="https://static.igem.org/mediawiki/2017/7/7e/EvaluationVector.png" alt="A scheme explaining the design of the Evaluation Vector."> |
<figcaption><b>Figure 1: New layout of the multiple cloning site in our Evaluation Vector.</b> The crosses indicate restriction enzyme sites: E= EcoRI, N= NotI, X=XbaI, S= SpeI and P= PstI. Please note: cutting with BsaI will result in an XbaI overhang.</figcaption></figure> | <figcaption><b>Figure 1: New layout of the multiple cloning site in our Evaluation Vector.</b> The crosses indicate restriction enzyme sites: E= EcoRI, N= NotI, X=XbaI, S= SpeI and P= PstI. Please note: cutting with BsaI will result in an XbaI overhang.</figcaption></figure> | ||
<p>At first, we removed a BsaI restriction enzyme site on the backbone of the vector by PCR based mutagenesis using primers TM3161 and TM3164 because it was interfering with our design. The confirmed BsaI free vector was then cut with EcoRI and XbaI to insert the Xylose inducible promoter P<sub><i>xylA</sub></i> <a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pubmed/24295448">[1]</a> wich was prior amplified using the primers iG17P051 and iG17P052 followed by digestion with EcoRI and BsaI (resulting in an XbaI overhang) to maintain the BioBrick prefix in front of the promoter. Next, we had to create an entirely new multiple cloning site (MCS): We synthesized a new RFP based on the sequence of the RFP found in the pSB1C3 backbone. The expression of this RFPsyn2 is still driven by the IPTG inducible P<sub><i>lacI</i></sub> promoter but lacks any restriction enzyme sites interferring with the RFC25 standard. | <p>At first, we removed a BsaI restriction enzyme site on the backbone of the vector by PCR based mutagenesis using primers TM3161 and TM3164 because it was interfering with our design. The confirmed BsaI free vector was then cut with EcoRI and XbaI to insert the Xylose inducible promoter P<sub><i>xylA</sub></i> <a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pubmed/24295448">[1]</a> wich was prior amplified using the primers iG17P051 and iG17P052 followed by digestion with EcoRI and BsaI (resulting in an XbaI overhang) to maintain the BioBrick prefix in front of the promoter. Next, we had to create an entirely new multiple cloning site (MCS): We synthesized a new RFP based on the sequence of the RFP found in the pSB1C3 backbone. The expression of this RFPsyn2 is still driven by the IPTG inducible P<sub><i>lacI</i></sub> promoter but lacks any restriction enzyme sites interferring with the RFC25 standard. | ||
Line 41: | Line 41: | ||
<figure> | <figure> | ||
<figure class="makeresponsive floatleft" style="width: 80%;"> | <figure class="makeresponsive floatleft" style="width: 80%;"> | ||
− | <img src="https://static.igem.org/mediawiki/2017/4/4d/EvaluationVectorCloning.png" alt="A scheme explaining the cloning of the Evaluation Vector."> | + | <img class="zoom" src="https://static.igem.org/mediawiki/2017/4/4d/EvaluationVectorCloning.png" alt="A scheme explaining the cloning of the Evaluation Vector."> |
<figcaption><b>Figure 2: Cloning scheme of the Evaluation Vector.</b> The detailed cloning workflow which led to the finished Evaluation Vector construct with the pBS1C backbone.</figcaption></figure> | <figcaption><b>Figure 2: Cloning scheme of the Evaluation Vector.</b> The detailed cloning workflow which led to the finished Evaluation Vector construct with the pBS1C backbone.</figcaption></figure> | ||
<p>Additionally, we added an AgeI restriction enzyme site in the BioBrick suffix which is necessary for translational fusions. Furthermore, we amplified a <i>lacZα</i> fragment with AgeI and NgoMIV restriction enzyme sites upstream of the coding sequence and the RFC10 BioBrick standard as suffix using the primers iG17P055 and iG17P056.<br>Finally, we combined our new MCS, by ligating the digested RFPsyn2 (cut with XbaI and AgeI) with the <i>lacZα</i> fragment (cut with AgeI and PstI). This MCS was inserted into the pBS1C-P<sub><i>xylA</i></sub> backbone, which was prior opened using BsaI (resulting in an XbaI overhang) and PstI (Figure 2). The final construct of our EV was verified by sequencing.<br><br>We decided to additionally also provide this MCS as a BioBrick. Therefore we cloned it into the pSB1C3 backbone (via EcoRI and PstI digest) and verified the construct by sequencing. It has been submitted to the parts registry under <a target="_blank" href ="http://parts.igem.org/Part:BBa_K2273107">BBa_K2273107</a>. | <p>Additionally, we added an AgeI restriction enzyme site in the BioBrick suffix which is necessary for translational fusions. Furthermore, we amplified a <i>lacZα</i> fragment with AgeI and NgoMIV restriction enzyme sites upstream of the coding sequence and the RFC10 BioBrick standard as suffix using the primers iG17P055 and iG17P056.<br>Finally, we combined our new MCS, by ligating the digested RFPsyn2 (cut with XbaI and AgeI) with the <i>lacZα</i> fragment (cut with AgeI and PstI). This MCS was inserted into the pBS1C-P<sub><i>xylA</i></sub> backbone, which was prior opened using BsaI (resulting in an XbaI overhang) and PstI (Figure 2). The final construct of our EV was verified by sequencing.<br><br>We decided to additionally also provide this MCS as a BioBrick. Therefore we cloned it into the pSB1C3 backbone (via EcoRI and PstI digest) and verified the construct by sequencing. It has been submitted to the parts registry under <a target="_blank" href ="http://parts.igem.org/Part:BBa_K2273107">BBa_K2273107</a>. | ||
Line 59: | Line 59: | ||
<div> | <div> | ||
<figure class="makeresponsive floatright" style="width: 33%;"> | <figure class="makeresponsive floatright" style="width: 33%;"> | ||
− | <img src="https://static.igem.org/mediawiki/2017/f/f4/TU_Dresden_Meetup_10.jpg" alt="An example picture to show how to include them." class="makeresponsive"> | + | <img class="zoom" src="https://static.igem.org/mediawiki/2017/f/f4/TU_Dresden_Meetup_10.jpg" alt="An example picture to show how to include them." class="makeresponsive"> |
<figcaption><b>Figure 4: TEXT TEXT TEXT TEXT TEXT.</b> TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT.</figcaption> | <figcaption><b>Figure 4: TEXT TEXT TEXT TEXT TEXT.</b> TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT.</figcaption> | ||
</figure> | </figure> | ||
<figure class="makeresponsive floatright" style="width: 25%;"> | <figure class="makeresponsive floatright" style="width: 25%;"> | ||
− | <img src="https://static.igem.org/mediawiki/2017/3/36/EvaluationVectorMap.png" alt="An example picture to show how to include them." class="makeresponsive"> | + | <img class="zoom" src="https://static.igem.org/mediawiki/2017/3/36/EvaluationVectorMap.png" alt="An example picture to show how to include them." class="makeresponsive"> |
<figcaption><b>Figure 3: Vector map of the EV.</b> The MCS is indicated in colors, grey elements refer to <i>E. coli</i> specific vector parts, white elements refer to <i>B. subtilis</i> specific vector parts.</figcaption> | <figcaption><b>Figure 3: Vector map of the EV.</b> The MCS is indicated in colors, grey elements refer to <i>E. coli</i> specific vector parts, white elements refer to <i>B. subtilis</i> specific vector parts.</figcaption> | ||
</figure> | </figure> |
Revision as of 18:55, 26 October 2017