Difference between revisions of "Team:Heidelberg/Model/Lagoon Contamination"

Line 15: Line 15:
  
 
             $$
 
             $$
             \frac{\partial c_{X}(t)}{\partial t} = -\Phi_{L} \cdot c_{X}(t) + \frac{\ln{2} }{T_{X} \cdot c_{X}(t)
+
             \frac{\partial c_{X}(t)}{\partial t} = -\Phi_{L} \cdot c_{X}(t) + \frac{\ln{2} }{T_{X}} \cdot c_{X}(t)
 
             $$
 
             $$
  
Line 30: Line 30:
 
             The contamination expands if the flow rate \(\Phi_{L}\) is greater than the growth factor \(\frac{ln(2)}{t_{X} }\),  
 
             The contamination expands if the flow rate \(\Phi_{L}\) is greater than the growth factor \(\frac{ln(2)}{t_{X} }\),  
 
             $$
 
             $$
             c_{X}(t) > 0, \quad if \Phi_{L} > \frac{ln(2)}{t_{X} }  
+
             c_{X}(t) > 0, \quad if \quad \Phi_{L} > \frac{ln(2)}{t_{X} }  
 
             $$
 
             $$
 
             it remains constant if the flow rate is exactly the growth factor
 
             it remains constant if the flow rate is exactly the growth factor
 
             $$
 
             $$
             c_{X}(t) = 0, \quad if \Phi_{L} = \frac{ln(2)}{t_{X} }
+
             c_{X}(t) = 0, \quad if \quad \Phi_{L} = \frac{ln(2)}{t_{X} }
            \end{cases}
+
 
             $$   
 
             $$   
 
             and it diminishes, when the flow rate is higher than the growth factor.
 
             and it diminishes, when the flow rate is higher than the growth factor.
 
             $$
 
             $$
             c_{X}(t) \less 0, \quad if \Phi_{L} \less \frac{ln(2)}{t_{X } }
+
             c_{X}(t) \less 0, \quad if \quad \Phi_{L} \less \frac{ln(2)}{t_{X } }
            \end{cases}
+
 
             $$
 
             $$
 
              
 
              

Revision as of 21:13, 27 October 2017

Modeling
Lagoon contamination
{{{1}}}
}}

References