Line 18: | Line 18: | ||
<div class="contentbox"> | <div class="contentbox"> | ||
− | <h1 class="box-heading">Background</h1> | + | <h1 id="background" class="box-heading">Background</h1> |
<p>Over the course of the last decades the quality, amount and spectrum of heterologous (and recombinant) proteins has drastically increased and therefore the need for techniques to easily express and purify these proteins has emerged. We find such proteins as ingredients of detergents (proteases), medical treatments (insulin) or food and beverage products (amylases). Simply put, heterologous proteins are ubiquitously present. <a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pubmed/23311580">[1]</a></p> | <p>Over the course of the last decades the quality, amount and spectrum of heterologous (and recombinant) proteins has drastically increased and therefore the need for techniques to easily express and purify these proteins has emerged. We find such proteins as ingredients of detergents (proteases), medical treatments (insulin) or food and beverage products (amylases). Simply put, heterologous proteins are ubiquitously present. <a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pubmed/23311580">[1]</a></p> | ||
<p>In order to tackle this demand we chose to apply the genetic tools of the model organism <i>Bacillus subtilis</i>. It is already one of the most frequently used hosts for overproduction of proteins throughout academia and industry because of its tremendous capacity to secret proteins, which can be exploited to increase the overall yield.</p> | <p>In order to tackle this demand we chose to apply the genetic tools of the model organism <i>Bacillus subtilis</i>. It is already one of the most frequently used hosts for overproduction of proteins throughout academia and industry because of its tremendous capacity to secret proteins, which can be exploited to increase the overall yield.</p> | ||
Line 35: | Line 35: | ||
<div class="contentbox"> | <div class="contentbox"> | ||
− | <h1 class="box-heading">Design</h1> | + | <h1 id="design" class="box-heading">Design</h1> |
<p><i>Bacillus subtilis</i> contains approximately 170 Sec Signal Peptides (SPs) that re-direct proteins for secretion via the Sec pathway. For our toolbox we were able to clone 74 Sec SPs (Table 1). Each SP was amplified from genomic DNA of <i>B. subtilis</i> wild type with the primers found in the primer collection table at the end of the Design section. After amplification, each SP was digested using the restriction enzymes EcoRI and PstI, stored into the pSB1C3 backbone and submitted to the partsregistry. | <p><i>Bacillus subtilis</i> contains approximately 170 Sec Signal Peptides (SPs) that re-direct proteins for secretion via the Sec pathway. For our toolbox we were able to clone 74 Sec SPs (Table 1). Each SP was amplified from genomic DNA of <i>B. subtilis</i> wild type with the primers found in the primer collection table at the end of the Design section. After amplification, each SP was digested using the restriction enzymes EcoRI and PstI, stored into the pSB1C3 backbone and submitted to the partsregistry. | ||
</p> | </p> | ||
Line 156: | Line 156: | ||
<div class="contentbox"> | <div class="contentbox"> | ||
− | <h1 class="box-heading">Results</h1> | + | <h1 id="protocol" class="box-heading">Results</h1> |
<h3>Amplification of the Signal Peptide Mixes via optimized multi-template PCR</h3> | <h3>Amplification of the Signal Peptide Mixes via optimized multi-template PCR</h3> | ||
<p>So far, no direct correlation between the perfect combination of signal peptide and downstream sequence to gain optimal secretion levels is known. Thus, the problem of having to create one clone per combination of SP and protein of interest remains. Therefore, we created the so-called Signal Peptide Mixes (SPMs), a set of libraries with each containing equal concentrations of up to twenty distinct SPs which can be easily enriched via multi-template PCR. The amplified SPs can then be combined with our Signal Peptide Evaluation Vector (SP-EV) and the gene of interest (For more details see the protocol in the end of the Results section).</p> | <p>So far, no direct correlation between the perfect combination of signal peptide and downstream sequence to gain optimal secretion levels is known. Thus, the problem of having to create one clone per combination of SP and protein of interest remains. Therefore, we created the so-called Signal Peptide Mixes (SPMs), a set of libraries with each containing equal concentrations of up to twenty distinct SPs which can be easily enriched via multi-template PCR. The amplified SPs can then be combined with our Signal Peptide Evaluation Vector (SP-EV) and the gene of interest (For more details see the protocol in the end of the Results section).</p> | ||
Line 166: | Line 166: | ||
<figure class="makeresponsive floatright" style="width: 34.8%;"> | <figure class="makeresponsive floatright" style="width: 34.8%;"> | ||
<img class="zoom" src="https://static.igem.org/mediawiki/2017/0/0c/SPM20v53.png"> | <img class="zoom" src="https://static.igem.org/mediawiki/2017/0/0c/SPM20v53.png"> | ||
− | <figcaption><b>Figure 2: SPMs with different amounts of SPs.</b> <b>A</b> SPMs with 53 distinct SPs. <b>B</b> SPMs with 20 distinct SPs.</figcaption> | + | <figcaption><b>Figure 2: SPMs with different amounts of SPs.</b> <b>A</b> SPMs with 53 distinct SPs. All sets were amplified using the same protocol.<b>B</b> SPMs with 20 distinct SPs. We used increased primer and template concentrations for lane one and two, decreased primer and increased template concentrations for lane three and four, increased primer and decreased template concentration for lane five and six, decreased primer and decreased template concentrations for lane seven and eight.</figcaption> |
</figure> | </figure> | ||
<p>In a first approach, we evaluated the multi-template PCR by varying the number of different SPs in one mix. Our aim was to amplify all SPs equally for the downstream cloning procedures. To test this, a SPM subset containing 53 SPs, was amplified using the RFC10 prefix and suffix as primers, we expected a band at around 100-200 Bp (size range of the SPs). Unfortunately, we also observed a second dominant band (at about 250 Bp) (Figure 2, A), which most likely derives from PCR artifacts. Thus, we concluded that a SPM consisting of 53 SPs was not suitable for our purposes.</p> | <p>In a first approach, we evaluated the multi-template PCR by varying the number of different SPs in one mix. Our aim was to amplify all SPs equally for the downstream cloning procedures. To test this, a SPM subset containing 53 SPs, was amplified using the RFC10 prefix and suffix as primers, we expected a band at around 100-200 Bp (size range of the SPs). Unfortunately, we also observed a second dominant band (at about 250 Bp) (Figure 2, A), which most likely derives from PCR artifacts. Thus, we concluded that a SPM consisting of 53 SPs was not suitable for our purposes.</p> | ||
Line 311: | Line 311: | ||
<hr> | <hr> | ||
− | <h3>High throughput screening procedure for <i><b>B. subtilis</b></i></h3> | + | <h3 id="secretion">High throughput screening procedure for <i><b>B. subtilis</b></i></h3> |
<p>After various adjustments to improve the applicability of the Signal Peptide Toolbox, we developed a high throughput screening procedure tailored to fit our model organism <i>B. subtilis</i> and proceeded to identify the most potent SPs for highest secretion of <i>B. subtilis'</i> alpha-Amylase.</p> | <p>After various adjustments to improve the applicability of the Signal Peptide Toolbox, we developed a high throughput screening procedure tailored to fit our model organism <i>B. subtilis</i> and proceeded to identify the most potent SPs for highest secretion of <i>B. subtilis'</i> alpha-Amylase.</p> | ||
<p>As we performed our transformation into a starch degradation-deficient <i>B. subtilis</i> strain (TMB3547) where the gene <i>amyE</i> was disrupted by the insertion of P<sub><i>veg</i></sub>-<i>LacZ</i>. This strain, still contains the necessary flanking regions for homologues recombination of the pBS1C vector. Thus, positive integration of the pBS1C-SPM-amyE construct lead to white colonies, when plated on X-Gal containing agar plates. (Figure 5, A)</p> | <p>As we performed our transformation into a starch degradation-deficient <i>B. subtilis</i> strain (TMB3547) where the gene <i>amyE</i> was disrupted by the insertion of P<sub><i>veg</i></sub>-<i>LacZ</i>. This strain, still contains the necessary flanking regions for homologues recombination of the pBS1C vector. Thus, positive integration of the pBS1C-SPM-amyE construct lead to white colonies, when plated on X-Gal containing agar plates. (Figure 5, A)</p> | ||
Line 353: | Line 353: | ||
</figure> | </figure> | ||
<hr> | <hr> | ||
− | <h2>Conclusion</h2> | + | <h2 id="conclusion">Conclusion</h2> |
<p class="survey-quote"=><b>Our team developed and proved the applicability of a powerful toolbox to quickly screen via a high throughput procedure for improved secretion of proteins in bacteria - the Signal Peptide Toolbox. Although, we could not test the system in Peptidosomes yet, we are very much sure that the vision to facilitate Peptidosomes as protein production platform can be achieved. The promising combination of increased protein secretion and physical separation of production host and end-product has endless possible applications.</b></p> | <p class="survey-quote"=><b>Our team developed and proved the applicability of a powerful toolbox to quickly screen via a high throughput procedure for improved secretion of proteins in bacteria - the Signal Peptide Toolbox. Although, we could not test the system in Peptidosomes yet, we are very much sure that the vision to facilitate Peptidosomes as protein production platform can be achieved. The promising combination of increased protein secretion and physical separation of production host and end-product has endless possible applications.</b></p> | ||
</div> | </div> |
Revision as of 10:19, 31 October 2017