Difference between revisions of "Team:Heidelberg/Software"

Line 21: Line 21:
 
     {{Heidelberg/templateus/Contentsection|
 
     {{Heidelberg/templateus/Contentsection|
 
         {{#tag:html|
 
         {{#tag:html|
             {{Heidelberg/overviewpanel|turk|
+
             {{Heidelberg/overviewpanel|#009193|
 
                 {{Heidelberg/panelelement|DeeProtein|https://static.igem.org/mediawiki/2017/2/2b/T--Heidelberg--2017_phage-titer-logo.png|https://2017.igem.org/Team:Heidelberg/Software/DeeProtein|
 
                 {{Heidelberg/panelelement|DeeProtein|https://static.igem.org/mediawiki/2017/2/2b/T--Heidelberg--2017_phage-titer-logo.png|https://2017.igem.org/Team:Heidelberg/Software/DeeProtein|
 
                 We apply deep learning models to harness the complex sequence to function relation in proteins. |Explore
 
                 We apply deep learning models to harness the complex sequence to function relation in proteins. |Explore

Revision as of 09:26, 1 November 2017


AiGEM
Artificial intelligence for Genetic Evolution Mimicking
abstract
Card image cap

DeeProtein

We apply deep learning models to harness the complex sequence to function relation in proteins.

Card image cap

GAIA

By interfacing our trained models with a genetic algorithm we developed an in silico evolution tool.

Card image cap

SafteyNet

To perform self-checks, and prevent misuse of directed evolution techniques, we developed SafetyNet a sensitive tool for the detection of harmful traits in sequences.

Card image cap

Validation

Deploying GAIA, we fully in silico evolved a beta lactamase and reprogrammed the E. Coli beta glucuronidase towards beta galactosidase function.

Card image cap

MAWS 2.0

Description