Difference between revisions of "Team:William and Mary/Composite Part"

 
(7 intermediate revisions by 3 users not shown)
Line 4: Line 4:
 
{{Team:William_and_Mary/HEADER2}}
 
{{Team:William_and_Mary/HEADER2}}
  
<!--
+
<html>
Bootstrap template by creative-tim-->
+
    <head>
  
<html lang="en">
 
<cfheader name="X-XSS-Protection" value="1">
 
  
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
 
 
 
<style>
 
<style>
 +
 
       body {
 
       body {
 
         font-family: 'PT Sans', sans-serif;
 
         font-family: 'PT Sans', sans-serif;
 
         font-size: 13px;
 
         font-size: 13px;
 
       }
 
       }
 +
 +
  
 
table, th, td {
 
table, th, td {
Line 22: Line 21:
 
}
 
}
  
table, th, td {
 
    border: 1px #696969;
 
}
 
  
td,
+
th, td {
th {
+
padding: 1px;
  padding: 3px !important;
+
 
}
 
}
 
 
 
  
 
</style>
 
</style>
  
 
</head>
 
</head>
 
  
 
<body>
 
<body>
  
 +
<br></br>
 
<br></br>
 
<br></br>
  
<center><img src="https://static.igem.org/mediawiki/2017/f/f9/T--William_and_Mary--interlab4.jpeg" width="380px"/></center>
+
<br></br>
  
 +
<center><img src="https://static.igem.org/mediawiki/2017/f/fe/T--William_and_Mary--compositeee.jpeg" width="430px"/></center>
  
  
 
<div style='padding-top: 50px;'></div>
 
<div style='padding-top: 50px;'></div>
  
<div style = 'padding-left: 190px; padding-bottom: 20px;font-size: 25px' ><b>Introduction</b></div>
+
<br></br>
  
<div style = 'padding-right: 190px; padding-left: 190px; text-indent: 50px;line-height: 25px;' >Inter-laboratory studies have great implications in both academia research and industry. Comparison of results can not only help determine the characteristics of certain products, but can also validate the test method and determine the source of uncertainty. Synthetic biology aims to achieve predicable gene expression outcomes [1], but challenges for this goal still exist on every level from parts design, circuity complexity to measurement methods. iGEM InterLab study is exactly designed to unravel the source of unpredictability and to quantify the degree of variability [2], the logical of which William and Mary iGEM team shares deeply. We have been an active participator of the InterLab Study since 2015 (the second year William and Mary joined the iGEM family) and we are very honored to be able to continue to contribute this study. </div>
+
<div style='padding-left: 20%;padding-right: 20%;text-indent: 30px;'>We are nominating our pLac mf-Lon (<a href="http://parts.igem.org/Part:BBa_K2333434"style='text-decoration: underline;'>K2333434</a>) construct for best composite part. This part was a cornerstone of our efforts to produce a modular method to alter gene expression speed, enabling us to test a wide variety of protease concentrations with ease. All of our primary characterization was done using this part, and we think that it will prove invaluable to anyone who wants to test a variety of mf-Lon concentrations without having to undergo a large number of cloning steps. As we demonstrated with our <a href="https://2017.igem.org/Team:William_and_Mary/Dynamic_Control"style='text-decoration: underline;'>IFFL</a> circuit, this part can also be used to produce fully functional circuit motifs, and as such could be used as part of a proof of concept or final implementation of other projects. We'd like to note that this part should fulfill our silver medal criteria, for more information please see our  <a href="https://2017.igem.org/Team:William_and_Mary/For_Judges"style='text-decoration: underline;'>for judges</a> page.
 +
</div>
  
<div style='padding-top: 40px;'></div>
 
  
<div style = 'padding-right: 190px; padding-left: 190px; text-indent: 50px;line-height: 25px;' >This year, the objective of InterLab is to test the precision of gene expression over different RBS devices with a GFP reporter. Teams from around the world are using the standard biological parts, same laboratory bacterium and standardized measurement procedure provided in a detailed protocol. Our team was excited about this year’s project and the improvements that InterLab has made such as the dried down DNA and extra reagents. We started our study on August, 8th.</div>
+
<div style='padding-top: 50px;'></div>
 +
<figure style='padding-left: 200px;'>
 +
<img src='https://static.igem.org/mediawiki/2017/3/3e/T--William_and_Mary--circuit6.jpeg' height = "80%" width = "80%"/>
 +
<figcaption><div style='padding-left: 5px;padding-top: 15px; color: #808080; font-size: 14px;'>Figure 1: Schematic of K2333434, mf-Lon is produced in the presense of IPTG. Part is typically used on backbone psb3K3  </div></figcaption>
 +
</figure>
  
 +
<div style='padding-top: 50px;'></div>
  
  
<div style='padding-top: 80px;'></div>
 
  
<div style = 'padding-left: 190px; padding-bottom: 30px;font-size: 20px' >Cell Measurement</div>
 
  
<div style = 'padding-right: 190px; padding-left: 190px; text-indent: 50px;line-height: 25px;' >2 colonies of each device was inoculated over night into 5 ml Luria- Bertani medium with 25 μg/mL Chloramphenicol in a 37°C, 220 rpm shaking incubator. Cell cultures were diluted to a target OD600 of 0.02 into same LB medium in 50 mL falcon tube covered with foil before use Diluted cultures were further grown at 37°C and 220 rpm. At 0, 2, 4, and 6 hours of incubation, 500 μL aliquot was taken from each two colonies of the 8 devices and were placed immediately on ice to prevent further growth. At the end of sampling point, 4 replicates 100 μl of each sample was pipetted into a 96-well microplate with the arrangement as below. Data was imported into the <a href="https://docs.google.com/spreadsheets/d/1tC-dW10aiqVDURof4HZY8bNCsF5Hvz-XXzgJwrXNu1I/edit#gid=1645629887" style='text-decoration: underline;'> Excel Sheet for submission.</a></div>
+
<center>
 +
<div style = 'padding-left: 0px; padding-bottom: 5px;font-size: 25px' ><b>All Composite Parts:</b></div></center>
  
<div style='padding-top: 40px;'></div>
+
<div style='background: #808080; margin: 0px 190px 20px 190px; height:1px;></div>
  
<center><img src="https://static.igem.org/mediawiki/2017/b/b2/T--William_and_Mary--96wells.jpeg" width="600px"/></center>
+
<div style='padding-top: 0px;'></div>
 +
<center>
 +
<table>
 +
<tr>
 +
<th style='background-color: #BEB9C7;column-width: 150px;'><center>Part</center></th>
 +
<th style='background-color: #BEB9C7;column-width: 350px;'><center>Description</center></th>
 +
</tr>
  
<div style='padding-top: 80px;'></div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 70px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333401"> K2333401 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 400px; font-size: 15px;'>Cloning Ready pdt #3A with Double Terminator</td>
 +
</tr>
  
<!-----Results/Discussion----->
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 70px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333402"> K2333402 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 400px; font-size: 15px;'>Cloning Ready pdt #3B with Double Terminator</td>
 +
</tr>
  
<div style = 'padding-left: 190px; padding-bottom: 0px;font-size: 25px' ><b>Results and Discussion</b></div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 70px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333403"> K2333403 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 400px; font-size: 15px;'>Cloning Ready pdt #3C with Double Terminator</td>
 +
</tr>
  
<div style='padding-top: 30px;'></div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 70px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333404"> K2333404 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 400px; font-size: 15px;'>Cloning Ready pdt #3D with Double Terminator</td>
 +
</tr>
  
<div style = 'padding-right: 190px; padding-left: 190px; text-indent: 50px;line-height: 25px;' >Below is the Fluorescein Standard Curve we obtained, from which we can still see the problem of saturation. We also converted the calibrated data of the time-measurement into a uM Fluorescence a.u./ OD600  versus time graph. Besides Device 1 and Device 4, all the others constructs show consistency of standardized fluorescence level in the two colonies over time. </div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 70px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333405"> K2333405 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 400px; font-size: 15px;'>Cloning Ready pdt #3D with Double Terminator</td>
 +
</tr>
  
<div style='padding-top: 30px;'></div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 70px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333406"> K2333406 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 400px; font-size: 15px;'>Cloning Ready pdt #3F with Double Terminator</td>
 +
</tr>
  
<div class="row">
 
<div class="col-sm-6" style=''><span class="pull-right">
 
<img src="https://static.igem.org/mediawiki/2017/2/2c/T--William_and_Mary--graph1.jpeg" width="300px"/></span></div>
 
<div class="col-sm-6" style=''>
 
<img src="https://static.igem.org/mediawiki/2017/1/15/T--William_and_Mary--graph2.jpeg" width="300px"/></div>
 
  
</div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333407"> K2333407 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 350px; font-size: 15px;'>UNS J23100 sfGFP pdt #3A</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333408"> K2333408 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 350px; font-size: 15px;'>UNS J23100 sfGFP pdt #3B</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333409"> K2333409 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 350px; font-size: 15px;'>UNS J23100 sfGFP pdt #3C</td>
 +
</tr>
  
<div style='padding-top: 30px;'></div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333410"> K2333410 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 350px; font-size: 15px;'>UNS J23100 sfGFP pdt #3D</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333411"> K2333411 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 350px; font-size: 15px;'>UNS J23100 sfGFP pdt #3E</td>
 +
</tr>
  
<div style = 'padding-right: 190px; padding-left: 190px; text-indent: 50px;line-height: 25px;' >From our experiment, we conclude that that BBa_J364100 is a stronger RBS, with an increase of 32.0%, 74.2% and 16.2% expression under J23101, J23106 and J23117 respectively compared to BBa_B0034.</div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333412"> K2333412 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 350px; font-size: 15px;'>UNS J23100 sfGFP pdt #3F</td>
 +
</tr>
  
<div style='padding-top: 30px;'></div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333413"> K2333413 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 250px; font-size: 15px;'>J23100 mScarlet-I</td>
 +
</tr>
  
<div style = 'padding-right: 190px; padding-left: 190px; text-indent: 50px;line-height: 25px;' >The Standardized RBS tested in this experiment, BCD (bicistronic design) 2 is a synthetic cistron leader peptide region that contains two Shine Dalgano sequences that is reported to have increased precise and reliable translation initiation [3]. Device1 and 4, 2 and 5 and Device 3 and 6 features the same strong (J23101), medium (J23106) and weak (J23117) promoters from the well-characterized Anderson promotor family in iGEM registry. Device 1-3 are under standard RBS BBa_B0034, (which William_and_Mary iGEM 2016 has proudly characterized), while Device 4-6 incorporate the test subject BBa_J364100 (BCD2). </div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333414"> K2333414 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 250px; font-size: 15px;'>J23100 mScarlet-I pdt #3A</td>
 +
</tr>
  
<div style='padding-top: 30px;'></div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333415"> K2333415 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 250px; font-size: 15px;'>J23100 mScarlet-I pdt #3B</td>
 +
</tr>
  
<div class="row">
+
<tr>
<div class="col-sm-6" style=''><span class="pull-right">
+
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333416"> K2333416 </a></td>
<img src="https://static.igem.org/mediawiki/2017/3/38/T--William_and_Mary--graph3.jpeg" width="450px"/></span></div>
+
<td style='background-color: #DED9E5;column-width: 250px; font-size: 15px;'>J23100 mScarlet-I pdt #3C</td>
<div class="col-sm-6" style=''>
+
</tr>
<img src="https://static.igem.org/mediawiki/2017/8/8e/T--William_and_Mary--graph4.jpeg" width="450px"/></div>
+
  
</div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333417"> K2333417 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 250px; font-size: 15px;'>J23100 mScarlet-I pdt #3D</td>
 +
</tr>
  
<div style='padding-top: 30px;'></div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333418"> K2333418 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 250px; font-size: 15px;'>J23100 mScarlet-I pdt #3E</td>
 +
</tr>
  
<div style = 'padding-right: 190px; padding-left: 190px; text-indent: 50px;line-height: 25px;' >Since all of the devices are under constitutive promoters, we assumed that fluorescence expression to be consistent over time in an optimal growth condition (37°C in LB medium). we compiled a total of 48 data of all 4 time points and 2 colonies of the same RBS and did an anova test for BBa_B0034 and BBa_J364100 and obtained a p-value of .085. </div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333419"> K2333419 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 250px; font-size: 15px;'>J23100 mScarlet-I pdt #3F</td>
 +
</tr>
  
<div style='padding-top: 15px;'></div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333420"> K2333420 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 350px; font-size: 15px;'>UNS pTet sfGFP</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333421"> K2333421 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 350px; font-size: 15px;'>UNS pTet sfGFP pdt #3A</td>
 +
</tr>
  
<center><img src="https://static.igem.org/mediawiki/2017/1/10/T--William_and_Mary--anova.jpeg" width="600px"/></center>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333422"> K2333422 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 350px; font-size: 15px;'>UNS pTet sfGFP pdt #3B</td>
 +
</tr>
  
<div style='padding-top: 15px;'></div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333423"> K2333423 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 350px; font-size: 15px;'>UNS pTet sfGFP pdt #3C</td>
 +
</tr>
  
<div style = 'padding-right: 190px; padding-left: 190px; text-indent: 50px;line-height: 25px;' >The failure of getting a significant difference between groups may be due to a small sample size and limitation of place reader measurement. Since Device 1 and Device 4 accounts for most of the variation, and both of which are under the same promoter, another possible explanation would be the context dependent performance of J23101, and an insulator part may be needed to further investigate property of this RBS if the same problem occurs across different teams [4]. We thank the iGEM Measurement Committee again for providing us an excellent opportunity to be part of this study and look forward to see the study results when data from all participating teams are put together.</div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333424"> K2333424 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 350px; font-size: 15px;'>UNS pTet sfGFP pdt #3D</td>
 +
</tr>
  
<div style='padding-top: 70px;'></div>
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333425"> K2333425 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 350px; font-size: 15px;'>UNS pTet sfGFP pdt #3E</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 150px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333426"> K2333426 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 350px; font-size: 15px;'>UNS pTet sfGFP pdt #3F</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333427"> K2333427 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 250px; font-size: 15px;'>UNS pTet mScarlet-I</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333428"> K2333428 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 250px; font-size: 15px;'>UNS pTet mScarlet-I pdt #3A</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333429"> K2333429 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 250px; font-size: 15px;'>UNS pTet mScarlet-I pdt #3B</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333430"> K2333430 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 250px; font-size: 15px;'>UNS pTet mScarlet-I pdt #3C</td>
 +
</tr>
  
<!---References----->
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333431"> K2333431 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 250px; font-size: 15px;'>UNS pTet mScarlet-I pdt #3D</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333432"> K2333432 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 250px; font-size: 15px;'>UNS pTet mScarlet-I pdt #3E</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333433"> K2333433 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 250px; font-size: 15px;'>UNS pTet mScarlet-I pdt #3F</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333434"> K2333434 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 200px; font-size: 15px;'>pLac0-1 mf-Lon</td>
 +
</tr>
  
<div style = 'padding-left: 280px; padding-bottom: 0px;font-size: 25px' ><b>References</b></div>
+
<tr>
<div style='padding-top: 30px;'></div>
+
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333435"> K2333435 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 200px; font-size: 15px;'>pBad mf-Lon</td>
 +
</tr>
  
<div style= 'padding-right: 300px; padding-left: 300px; text-indent: px;line-height: 25px;' >
+
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333437"> K2333437 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 250px; font-size: 15px;'>Copper Sensor pdt #3A</td>
 +
</tr>
  
[1] Kwok, R. (2010). Five hard truths for synthetic biology. Nature, 463(7279), 288-290. doi:10.1038/463288a
+
<tr>
<div style='padding-top: 15px;'></div>
+
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333438"> K2333438 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 250px; font-size: 15px;'>Copper Sensor pdt #3B</td>
 +
</tr>
  
[2] Beal, J., Haddock-Angelli, T., Gershater, M., Mora, K. D., Lizarazo, M., Hollenhorst, J., & Rettberg, R. (2016). Reproducibility of Fluorescent Expression from Engineered Biological Constructs in E. coli. Plos One, 11(3). doi:10.1371/journal.pone.0150182
+
<tr>
<div style='padding-top: 15px;'></div>
+
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333439"> K2333439 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 250px; font-size: 15px;'>Copper Sensor pdt #3C</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333440"> K2333440 </a></td>
 +
<td style='background-color: #ECE7F2;column-width: 250px; font-size: 15px;'>Copper Sensor pdt #3D</td>
 +
</tr>
  
[3] Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C., Christoffersen, M. J., Mai, Q., . . . Endy, D. (2013). Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Methods, 10(4), 354-360. doi:10.1038/nmeth.2404
+
<tr>
<div style='padding-top: 15px;'></div>
+
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333441"> K2333441 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 250px; font-size: 15px;'>Copper Sensor pdt #3E</td>
 +
</tr>
  
 +
<tr>
 +
<td style='background-color: #9892A1;column-width: 50px; font-size: 15px;'><a href="http://parts.igem.org/Part:BBa_K2333442"> K2333442 </a></td>
 +
<td style='background-color: #DED9E5;column-width: 250px; font-size: 15px;'>Copper Sensor pdt #3F</td>
 +
</tr>
  
[4] Davis, J. H., Rubin, A. J., & Sauer, R. T. (2011). Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Research, 39(3), 1131–1141. http://doi.org/10.1093/nar/gkq810
 
  
</div>
+
</table>
 +
</center>
  
  
 
<div style='padding-top: 60px;'></div>
 
  
 
</body>
 
</body>
 
  
 
</html>
 
</html>
  
 
+
{{Team:William_and_Mary/JS_SOURCE}}
 
+
 
+
{{Team:William_and_Mary/JS_SOURCE2}}
+
 
{{Team:William_and_Mary/FOOTER_SMALL}}
 
{{Team:William_and_Mary/FOOTER_SMALL}}

Latest revision as of 02:45, 2 November 2017









We are nominating our pLac mf-Lon (K2333434) construct for best composite part. This part was a cornerstone of our efforts to produce a modular method to alter gene expression speed, enabling us to test a wide variety of protease concentrations with ease. All of our primary characterization was done using this part, and we think that it will prove invaluable to anyone who wants to test a variety of mf-Lon concentrations without having to undergo a large number of cloning steps. As we demonstrated with our IFFL circuit, this part can also be used to produce fully functional circuit motifs, and as such could be used as part of a proof of concept or final implementation of other projects. We'd like to note that this part should fulfill our silver medal criteria, for more information please see our for judges page.
Figure 1: Schematic of K2333434, mf-Lon is produced in the presense of IPTG. Part is typically used on backbone psb3K3
All Composite Parts:
Part
Description
K2333401 Cloning Ready pdt #3A with Double Terminator
K2333402 Cloning Ready pdt #3B with Double Terminator
K2333403 Cloning Ready pdt #3C with Double Terminator
K2333404 Cloning Ready pdt #3D with Double Terminator
K2333405 Cloning Ready pdt #3D with Double Terminator
K2333406 Cloning Ready pdt #3F with Double Terminator
K2333407 UNS J23100 sfGFP pdt #3A
K2333408 UNS J23100 sfGFP pdt #3B
K2333409 UNS J23100 sfGFP pdt #3C
K2333410 UNS J23100 sfGFP pdt #3D
K2333411 UNS J23100 sfGFP pdt #3E
K2333412 UNS J23100 sfGFP pdt #3F
K2333413 J23100 mScarlet-I
K2333414 J23100 mScarlet-I pdt #3A
K2333415 J23100 mScarlet-I pdt #3B
K2333416 J23100 mScarlet-I pdt #3C
K2333417 J23100 mScarlet-I pdt #3D
K2333418 J23100 mScarlet-I pdt #3E
K2333419 J23100 mScarlet-I pdt #3F
K2333420 UNS pTet sfGFP
K2333421 UNS pTet sfGFP pdt #3A
K2333422 UNS pTet sfGFP pdt #3B
K2333423 UNS pTet sfGFP pdt #3C
K2333424 UNS pTet sfGFP pdt #3D
K2333425 UNS pTet sfGFP pdt #3E
K2333426 UNS pTet sfGFP pdt #3F
K2333427 UNS pTet mScarlet-I
K2333428 UNS pTet mScarlet-I pdt #3A
K2333429 UNS pTet mScarlet-I pdt #3B
K2333430 UNS pTet mScarlet-I pdt #3C
K2333431 UNS pTet mScarlet-I pdt #3D
K2333432 UNS pTet mScarlet-I pdt #3E
K2333433 UNS pTet mScarlet-I pdt #3F
K2333434 pLac0-1 mf-Lon
K2333435 pBad mf-Lon
K2333437 Copper Sensor pdt #3A
K2333438 Copper Sensor pdt #3B
K2333439 Copper Sensor pdt #3C
K2333440 Copper Sensor pdt #3D
K2333441 Copper Sensor pdt #3E
K2333442 Copper Sensor pdt #3F