Difference between revisions of "Team:Paris Bettencourt/Overview"

 
(94 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
{{Paris_Bettencourt}}
 
{{Paris_Bettencourt}}
 
<html>
 
<html>
 
 
  
  
Line 9: Line 7:
 
<style type="text/css">
 
<style type="text/css">
  
#header {
+
#header1 {
 +
background-image : url("https://static.igem.org/mediawiki/2017/1/15/Overview_header_PB.jpeg");
 +
}
 +
 
 +
.buttons {
 +
border-radius : 150px;
 +
width : 200px;
 +
height : 200px;
 +
position : relative;
 +
display : inline-block;
 +
margin : 0px auto;
 +
color : white !important;
 +
text-decoration : none !important;
 +
line-height : 100px;
 +
        font-size : 15px;
 +
        margin-left : 10px;
 +
        margin-rigth : 10px;
 +
}
 +
.line {
 +
display : inline-block;
 
width : 100%;
 
width : 100%;
height : 100%;
+
height : 200px;
background-image : url("");
+
margin-top : 50px;
background-attachment: fixed;
+
background-position : center;
+
background-repeat : no-repeat;
+
background-size : cover;
+
background-color : rgb(200,200,200);
+
 
text-align : center;
 
text-align : center;
font-size : 50px;
 
        position : relative;
 
        display : block;
 
 
}
 
}
#side {
+
.line .buttons {
height : 100%;
+
background-color : rgb(41,80,142)
width : 15%;
+
position : fixed;
+
right : 0;
+
 
}
 
}
#sidemenu {
+
 
text-align : left;
+
#applicationmenu {
right : 0px;
+
text-align : center;
width : 100%;
+
position : absolue;
+
margin-top : 50%;
+
 
}
 
}
#sidemenu ul {
+
#application1 {
        display : block;
+
display : none;
 
}
 
}
.liste1 {
+
#application2 {
list-style-type: none;
+
display : none;
line-height : 30px;
+
        display : block;
+
 
}
 
}
.liste1 a {
+
#application3 {
text-decoration : none;
+
display : none;
color : black;
+
 
}
 
}
.liste1:hover {
+
#application4 {
border-left : 2px solid #f64553;
+
display : none;
 
}
 
}
#element1:focus {
+
#application5 {
color : red;
+
display : none;
text-decoration : underline;
+
}
 +
#application6 {
 +
display : none;
 
}
 
}
  
 
+
.divseparator {
body {
+
        width : 20%;
margin : 0;
+
        height : 0px;
pading : 0;
+
        border : solid 0.5px rgb(64,64,64);
font-family : lato, sans-serif;
+
         margin : 25px auto;
         height : 100%;
+
        position : relative;
 +
        display : block;
 
}
 
}
h1 {
+
.horiline {
text-align : center;
+
  height: 3px;
        font-size : 50px;
+
  width: 300px;
 +
  margin: -0.5em 0;
 +
  color: rgb(64,64,64) ;
 +
  display: block;
 +
    margin-left: auto;
 +
    margin-right: auto
 
}
 
}
#textbody {
+
.figureone {
width : 700px;
+
  width: 65%;
margin : 0 auto;
+
  margin: auto;
text-align : justify;
+
  display: block;
 
}
 
}
.block {
+
.figuremiddle {
width : 100%;
+
  width: 75%;
        margin-top : 50px;
+
  margin: auto;
 +
  display: block;
 
}
 
}
 +
.halfimg {
 +
  width : 50% !important;
 +
  margin-left : 25%;
 +
}
 +
 
</style>
 
</style>
  
 
<body>
 
<body>
<div id=side>
+
 
<div id=sidemenu>
+
<div id=header1 class="header">OVERVIEW</div>
<ul>
+
 
<li id=element1 class=liste1><a href="#block1">Lorem 1</a></li>
+
<div class=textbody><h1>Why do we need 3D control?</h1>
<li id=element2 class=liste1><a href="#block2">Lorem 2</a></li>
+
 
<li id=element3 class=liste1><a href="#block3">Lorem 3</a></li>
+
<div class =text1> Life exists in three dimensions but oftentimes, life sciences research remains very flat. Our limitation to control precise behaviour in a 3D space, abstracts what we can do and distances us from in vivo. Having power ful tools in the 3D allows us to both study and control life with more accuracy. </div>
<li id=element4 class=liste1><a href="#block4">Lorem 4</a></li>
+
 
<li id=element5 class=liste1><a href="#block5">Lorem 5</a></li>
+
<div class=figureone><img src="https://static.igem.org/mediawiki/2017/0/06/PB_overviewIntro.png"></div>
</ul>
+
</br>
</div>
+
 
</div>
 
</div>
 +
<div class=textbody>
 +
<div class=divseparator></div>
  
<div id="header">Find me a header</div>
+
                <div class=text1><h1>A Bacterial 3D printer</h1></div>
 +
                <div class=text2>
 +
                <div class=text2left>To best demonstrate our 3D control tools, we created a intuitive way to bring our technologies into people’s every day life. We created a bacterial 3D printer, where we developed and characterise optogenetic tools in bacteria to produce a biomaterial when activated. This is a demonstration of our work where we showcase spatial control with a final product. This also allowed us to further characterise biomaterial </div>
 +
              <div class=text2right> production in micro-organisms. We chose to focus on three biomaterials: Calcium Carbonate, Poly-silicate and Poly-hydroalkanoates (PHA). The system also allows us to apply intracellular 3D control, which we achieve thanks to designing synthetic RNA organelles in the cell where local enzyme concentrations are generated. Thus, to perfect our 3D printer we focused on several main axes of research.  </div>
 +
</div>
 +
<div class=figuremiddle><img src="https://static.igem.org/mediawiki/2017/a/af/PB_overviewfig2.png"></div>
 +
<div class=divseparator></div>
 +
<div class=text2>
 +
<div class=text2left><h1>Optogenentic Control</h1>
 +
The Medusa optic control system activates bacteria in a target point with two light beams. Thanks to two photoreceptors integrated in an And-Gate logic, only the bacteria located at the intersection of the beams become activated. We implemented two kinds of photoreceptors: a couple of the <a href="https://2017.igem.org/Team:Paris_Bettencourt/Transmembrane_Proteins"><b>classical membrane photosensors</b></a> and two more recent <a href="https://2017.igem.org/Team:Paris_Bettencourt/Transmembrane_Proteins"><b> photocaging fluorescent proteins</b></a>. We processed the inhibitory input of our photosensors thanks to <a href="https://2017.igem.org/Team:Paris_Bettencourt/Logic_Circuit"><b>a newly designed Nor-Gate</b></a> .</div>
 +
<div class=text2right><img class=halfimg src="https://static.igem.org/mediawiki/2017/c/ce/Optogenetic_overview.png"></div>
 +
</div>
 +
<div class=divseparator></div>
 +
<div class=text2>
 +
<div class=text2left><img class=halfimg src="https://static.igem.org/mediawiki/2017/0/0d/Overview_Biomaterials.png"></div>
 +
<div class=text2right><h1>Biomaterials</h1>
 +
To demonstrate the power of our control system, we placed the synthesis of three biomaterials downstream of our light sensing circuit. This turns our light controlled bacteria in a 3D-bioprinter able to print <a ref="https://2017.igem.org/Team:Paris_Bettencourt/Biomaterials#header2"><b> bioplastic </b></a> , <a href="https://2017.igem.org/Team:Paris_Bettencourt/Biomaterials#header4"><b> bioglass </b></a>  and, <a href="https://2017.igem.org/Team:Paris_Bettencourt/Biomaterials#header3"><b> limestone </b></a>.
  
<div id=textbody>
+
</div>
<div id=block1 class=block>
+
<h1>Sub-title1</h1>
+
<span>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla aliquet auctor fringilla. Mauris imperdiet est a risus vulputate, at fringilla nisi vehicula. Aliquam sodales enim vel nibh luctus imperdiet. Phasellus eu felis viverra velit viverra viverra id scelerisque elit. Phasellus sed eros nunc. Duis ipsum metus, tempor vel ipsum vitae, iaculis convallis enim. Praesent rutrum elit sit amet consectetur faucibus. Praesent porttitor non ex et lobortis. Donec malesuada sed odio a scelerisque. Aenean tempor enim sed bibendum malesuada. Nunc pharetra tellus sed massa condimentum, ut placerat lectus vestibulum. Donec ornare pulvinar eros, nec laoreet erat egestas at. Morbi consequat maximus. </span>
+
 
</div>
 
</div>
<div id=block2 class=block>
+
<div class=divseparator></div>
<h1>Sub-title2</h1>
+
<div class=text2>
<span>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla aliquet auctor fringilla. Mauris imperdiet est a risus vulputate, at fringilla nisi vehicula. Aliquam sodales enim vel nibh luctus imperdiet. Phasellus eu felis viverra velit viverra viverra id scelerisque elit. Phasellus sed eros nunc. Duis ipsum metus, tempor vel ipsum vitae, iaculis convallis enim. Praesent rutrum elit sit amet consectetur faucibus. Praesent porttitor non ex et lobortis. Donec malesuada sed odio a scelerisque. Aenean tempor enim sed bibendum malesuada. Nunc pharetra tellus sed massa condimentum, ut placerat lectus vestibulum. Donec ornare pulvinar eros, nec laoreet erat egestas at. Morbi consequat maximus. </span>
+
<div class=text2left><h1>RNA organelle</h1>RNA is a light cost nucleotide material in the cell,
 +
We aim to recreate RNA agglomerations as formed
 +
in mammalian cells with triple repeat disorders,
 +
which show liquid phase separation, forming a
 +
<a href="https://2017.igem.org/Team:Paris_Bettencourt/RNA"><b> organelle-like vesicle</b></a>, where local concentrations of
 +
enzymes can be created.</div>
 +
<div class=text2right><img class=halfimg src="https://static.igem.org/mediawiki/2017/b/b1/Overview_RNS.png">
 
</div>
 
</div>
<div id=block3 class=block>
+
</div></div>
<h1>Sub-title3</h1>
+
</body>
<span>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec ultrices nulla tincidunt, hendrerit diam at, condimentum sem. Quisque ac condimentum tellus, at viverra risus. Aenean venenatis at est sed rhoncus. Suspendisse libero sapien, dictum quis convallis tempus, dapibus et tortor. Etiam tincidunt ut turpis quis tincidunt. Donec vitae suscipit arcu. Nullam finibus purus leo, sed vestibulum mi sodales a. Ut vestibulum quis metus eu ullamcorper. Morbi elementum tellus eu nibh bibendum, non laoreet lorem molestie. Nam interdum dictum leo, at malesuada nisi fermentum quis. Aliquam cursus non ex vitae euismod. In eget mi et ligula viverra cursus venenatis et justo. Proin sed lacus aliquam, interdum metus a, tempor sapien. Maecenas non cursus sem. Nulla auctor sollicitudin ullamcorper. Pellentesque faucibus sed est in varius. Vestibulum ullamcorper elementum molestie. Maecenas posuere lectus ut placerat volutpat. Vivamus vulputate, nisi in efficitur sodales, felis ex rhoncus neque, sed sollicitudin nibh purus nec tellus. Donec. </span>
+
</div>
+
<div id=block4 class=block>
+
<h1>Sub-title4</h1>
+
<span>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque vel vehicula felis. Aenean non elit magna. Integer tincidunt cursus fringilla. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Quisque tempor vitae sem at varius. Donec sed rutrum justo. Cras ut elementum sem. Cras tempus, nunc eget tempor feugiat, quam diam aliquet nisi, id pharetra mauris tortor vitae nibh. Curabitur id turpis eget nibh vehicula cursus nec et sapien. Aenean laoreet aliquam gravida. Donec a ex tempus, varius augue quis, pharetra massa. Proin in gravida urna. Pellentesque dapibus elit quis enim mattis, a porttitor purus rutrum. Donec eget consectetur nisl, sed commodo dui. Suspendisse lobortis justo ac ornare lacinia. Pellentesque quis arcu justo. Praesent pulvinar, lorem ut consequat tincidunt, augue nunc laoreet orci, quis pharetra arcu augue eu ligula. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque fermentum mattis ipsum, et tincidunt dolor tempus nec. Maecenas ac arcu eu lacus fringilla ornare non ac erat. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Sed vehicula euismod placerat. Ut volutpat felis vitae lorem pulvinar, eget finibus dui molestie. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Nulla egestas est vitae odio sagittis condimentum euismod et magna. Vivamus porttitor diam tortor, quis tincidunt dolor pulvinar quis. Suspendisse tincidunt ornare eros. Nullam at lobortis lectus. Integer sit amet bibendum turpis. Suspendisse enim elit, placerat ac iaculis sed, maximus vel lectus. Praesent fermentum facilisis eros. Pellentesque tincidunt, enim vel porta commodo, justo massa laoreet lorem, ac interdum massa augue in turpis. Fusce elit est, rutrum sit amet velit ac, ultrices pellentesque metus. Cras viverra rutrum eros id vestibulum. Donec at luctus neque, a pellentesque diam. Donec vel congue nibh, in auctor tellus. Duis nisi lectus, placerat vel odio et, dapibus pharetra dui. Mauris sagittis purus non ipsum eleifend, ut interdum neque tincidunt.</span>
+
</div>
+
<div id=block5 class=block>
+
<h1>Sub-title5</h1>
+
<span>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla aliquet auctor fringilla. Mauris imperdiet est a risus vulputate, at fringilla nisi vehicula. Aliquam sodales enim vel nibh luctus imperdiet. Phasellus eu felis viverra velit viverra viverra id scelerisque elit. Phasellus sed eros nunc. Duis ipsum metus, tempor vel ipsum vitae, iaculis convallis enim. Praesent rutrum elit sit amet consectetur faucibus. Praesent porttitor non ex et lobortis. Donec malesuada sed odio a scelerisque. Aenean tempor enim sed bibendum malesuada. Nunc pharetra tellus sed massa condimentum, ut placerat lectus vestibulum. Donec ornare pulvinar eros, nec laoreet erat egestas at. Morbi consequat maximus. </span>
+
</div>
+
</div>
+
<!-- If you need more block/subdivision of a block, ask me-->
+
  
 
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"></script>
 
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"></script>
  
 
</body>
 
  
 
</html>
 
</html>
 
  
  
 
{{Paris_Bettencourt/footer}}
 
{{Paris_Bettencourt/footer}}

Latest revision as of 03:12, 2 November 2017

OVERVIEW

Why do we need 3D control?

Life exists in three dimensions but oftentimes, life sciences research remains very flat. Our limitation to control precise behaviour in a 3D space, abstracts what we can do and distances us from in vivo. Having power ful tools in the 3D allows us to both study and control life with more accuracy.

A Bacterial 3D printer

To best demonstrate our 3D control tools, we created a intuitive way to bring our technologies into people’s every day life. We created a bacterial 3D printer, where we developed and characterise optogenetic tools in bacteria to produce a biomaterial when activated. This is a demonstration of our work where we showcase spatial control with a final product. This also allowed us to further characterise biomaterial
production in micro-organisms. We chose to focus on three biomaterials: Calcium Carbonate, Poly-silicate and Poly-hydroalkanoates (PHA). The system also allows us to apply intracellular 3D control, which we achieve thanks to designing synthetic RNA organelles in the cell where local enzyme concentrations are generated. Thus, to perfect our 3D printer we focused on several main axes of research.

Optogenentic Control

The Medusa optic control system activates bacteria in a target point with two light beams. Thanks to two photoreceptors integrated in an And-Gate logic, only the bacteria located at the intersection of the beams become activated. We implemented two kinds of photoreceptors: a couple of the classical membrane photosensors and two more recent photocaging fluorescent proteins. We processed the inhibitory input of our photosensors thanks to a newly designed Nor-Gate .

Biomaterials

To demonstrate the power of our control system, we placed the synthesis of three biomaterials downstream of our light sensing circuit. This turns our light controlled bacteria in a 3D-bioprinter able to print bioplastic , bioglass and, limestone .

RNA organelle

RNA is a light cost nucleotide material in the cell, We aim to recreate RNA agglomerations as formed in mammalian cells with triple repeat disorders, which show liquid phase separation, forming a organelle-like vesicle, where local concentrations of enzymes can be created.


Centre for Research and Interdisciplinarity (CRI)
Faculty of Medicine Cochin Port-Royal, South wing, 2nd floor
Paris Descartes University
24, rue du Faubourg Saint Jacques
75014 Paris, France
bettencourt.igem2017@gmail.com