(21 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Heidelberg/header}} | {{Heidelberg/header}} | ||
{{Heidelberg/navbar}} | {{Heidelberg/navbar}} | ||
− | |||
− | |||
{{Heidelberg/header}} | {{Heidelberg/header}} | ||
Line 16: | Line 14: | ||
AiGEM| | AiGEM| | ||
Artificial intelligence for Genetic Evolution Mimicking| | Artificial intelligence for Genetic Evolution Mimicking| | ||
− | https://static.igem.org/mediawiki/2017/ | + | https://static.igem.org/mediawiki/2017/e/e6/T--Heidelberg--2017_Background_board.jpg|turk| |
− | + | {{Heidelberg/abstract|https://static.igem.org/mediawiki/2017/b/ba/T--Heidelberg--2017_AiGEM_GA.jpg| | |
− | {{Heidelberg/abstract|https://static.igem.org/mediawiki/2017/ | + | To simplify the generation of desired functionalities <i>de novo</i> and enable evolutionary leaps, we created AiGEM, our Artificial Intelligence for Genetic Evolution Mimicking software suite. The heart of our software is DeeProtein, a deep neural network trained on ~10 million protein sequences and able to infer sequence-function relationships from raw sequence data with high accuracy. By interfacing DeeProtein with our genetic algorithm GAIA, we – for the first time - established a fully closed, <i>in silico</i> evolution cycle driven by an intelligent network. We used AiGEM to successfully modulate the catalytic efficiency of β-lactamases, thereby even producing variants which highly outperform the wild type enzyme. To demonstrate AiGEM’s ability for generating functionality de novo, we created a novel, highly efficient β-galactosidase purely by <i>in silico</i> evolution of a β-glucuronidase parental sequence. Finally, as part of our integrated human practices project, we implemented SafetyNet, a DeeProtein-based web application safeguarding directed evolution experiments. |
− | + | ||
}} | }} | ||
{{Heidelberg/templateus/Contentsection| | {{Heidelberg/templateus/Contentsection| | ||
{{#tag:html| | {{#tag:html| | ||
− | {{Heidelberg/overviewpanel|# | + | {{Heidelberg/overviewpanel|#009193| |
− | {{Heidelberg/panelelement|DeeProtein|https://static.igem.org/mediawiki/2017/ | + | {{Heidelberg/panelelement|DeeProtein|https://static.igem.org/mediawiki/2017/b/b7/T--Heidelberg--2017_DeeProtein_LOGO.jpg|https://2017.igem.org/Team:Heidelberg/Software/DeeProtein| |
We apply deep learning models to harness the complex sequence to function relation in proteins. |Explore | We apply deep learning models to harness the complex sequence to function relation in proteins. |Explore | ||
}} | }} | ||
− | {{Heidelberg/panelelement|GAIA|https://static.igem.org/mediawiki/2017/ | + | {{Heidelberg/panelelement|GAIA|https://static.igem.org/mediawiki/2017/5/59/T--Heidelberg--2017_GAIA_LOGO.png|https://2017.igem.org/Team:Heidelberg/Software/GAIA| |
By interfacing our trained models with a genetic algorithm we developed an <i>in silico</i> evolution tool.|Explore | By interfacing our trained models with a genetic algorithm we developed an <i>in silico</i> evolution tool.|Explore | ||
}} | }} | ||
− | {{Heidelberg/panelelement| | + | {{Heidelberg/panelelement|SafetyNet|https://static.igem.org/mediawiki/2017/1/1d/T--Heidelberg--2017_Safetynet_LOGO.png|https://2017.igem.org/Team:Heidelberg/Software/SafetyNet| |
To perform self-checks, and prevent misuse of directed evolution techniques, we developed SafetyNet a sensitive tool for the detection of harmful traits in sequences.|Explore | To perform self-checks, and prevent misuse of directed evolution techniques, we developed SafetyNet a sensitive tool for the detection of harmful traits in sequences.|Explore | ||
}} | }} | ||
− | {{Heidelberg/panelelement|Validation|https://static.igem.org/mediawiki/2017/ | + | {{Heidelberg/panelelement|Validation|https://static.igem.org/mediawiki/2017/a/ac/T--Heidelberg--2017_Validation_LOGO.png|https://2017.igem.org/Team:Heidelberg/Validation| |
Deploying GAIA, we fully <i>in silico</i> evolved a beta lactamase and reprogrammed the <i>E. Coli</i> beta glucuronidase towards beta galactosidase function.|Explore | Deploying GAIA, we fully <i>in silico</i> evolved a beta lactamase and reprogrammed the <i>E. Coli</i> beta glucuronidase towards beta galactosidase function.|Explore | ||
}} | }} | ||
− | {{Heidelberg/panelelement|MAWS 2.0|https://static.igem.org/mediawiki/ | + | {{Heidelberg/panelelement|MAWS 2.0|https://static.igem.org/mediawiki/2015/b/be/Heidelberg_media_icons_software.svg|https://2017.igem.org/Team:Heidelberg/Software/MAWS| |
− | + | The availability of specific riboswitches is key to the succes of enzyme PREDCEL/PACE experiments. We therefore reiterated the MAWS aptamer prediction software.|Explore | |
}} | }} | ||
}} | }} |
Latest revision as of 03:16, 2 November 2017
AiGEM
Artificial intelligence for Genetic Evolution Mimicking