Difference between revisions of "Team:Paris Bettencourt/RNA"

 
(132 intermediate revisions by 4 users not shown)
Line 9: Line 9:
 
<style type="text/css">
 
<style type="text/css">
  
#header {
 
width : 100%;
 
height : 100vh;
 
background-image : url("");
 
background-attachment: fixed;
 
background-position : center;
 
background-repeat : no-repeat;
 
background-size : cover;
 
background-color : rgb(200,200,200);
 
text-align : center;
 
font-size : 50px;
 
        display : block;
 
}
 
#side {
 
height : 100%;
 
width : 15%;
 
position : fixed;
 
right : 0;
 
}
 
#sidemenu {
 
text-align : left;
 
right : 0px;
 
width : 100%;
 
position : absolue;
 
margin-top : 50%;
 
}
 
#sidemenu ul {
 
        display : block;
 
}
 
.liste1 {
 
list-style-type: none;
 
line-height : 30px;
 
        display : block;
 
}
 
.liste1 a {
 
text-decoration : none;
 
color : black;
 
}
 
.liste1:hover {
 
border-left : 2px solid #f64553;
 
}
 
#element1:focus {
 
color : red;
 
text-decoration : underline;
 
}
 
  
html {
+
#header1 {
        height : 100%;
+
background-image : url("https://static.igem.org/mediawiki/2017/a/af/RNA_Backgroud_2.png");
}
+
body {
+
margin : 0;
+
pading : 0;
+
font-family : lato, sans-serif;
+
        height : 100%;
+
}
+
#textbody h1 {
+
text-align : center;
+
        font-size : 50px;
+
        margin-bottom : 25px;
+
}
+
#textbody {
+
width : 700px;
+
margin : 0 auto;
+
text-align : justify;
+
}
+
.block {
+
width : 100%;
+
        margin-top : 50px;
+
 
}
 
}
 
</style>
 
</style>
  
 
<body>
 
<body>
<div id=side>
+
<div id=header1 class="header">RNA Organelle</div>
<div id=sidemenu>
+
                                <div class=textbody>
<ul>
+
                                        <div class=text1>
<li id=element1 class=liste1><a href="#block1">Lorem 1</a></li>
+
                                                <h1>RNA Aggregation</h1><p>In synthetic biology, we are often introducing new pathways to bacteria that do not naturally express them, and sometimes even creates new proteins that don't exist before. The novel pathway will produce exotic enzymes and proteins which the host bacteria will not necessarily have the internal environment in order to organise these macromolecular products. Ultimately, this could be detrimental to the performance of both the pathway and the organism itself. Additionally, depending on the organism used, the activity of the pathway can vary and be difficult to characterise against other models used. Thus, we aim to standardize the microenvironmental activity of different pathways within the cell by localising the associated enzymes/proteins in an RNA based structure, leading to the pathway to act in a predictable way, regardless of the organism.</p>
<li id=element2 class=liste1><a href="#block2">Lorem 2</a></li>
+
                                                <!-- your text-->
<li id=element3 class=liste1><a href="#block3">Lorem 3</a></li>
+
                                <!-- PART 1-->
<li id=element4 class=liste1><a href="#block4">Lorem 4</a></li>
+
                                        </div>
<li id=element5 class=liste1><a href="#block5">Lorem 5</a></li>
+
                                        <div class=text4>
</ul>
+
                                                <div class=text4left><img id=img1 src="https://static.igem.org/mediawiki/2017/6/65/RNA_wiki_1.png"><!--An image or you can replace it by text--><span><strong>Fig. 1: </strong><strong>A.</strong>) Representation of single-stranded RNA that forms the liquid-liquid phase separated-like structure. <strong>B.</strong>) Images of RNA aggregates formed inside the nucleus of different mutant mammalian cells that express RNA containing either the repeats CUG or CAG</span></div>
</div>
+
                                                <div class=text4right>In mammalian cells, RNA containing triplet repeats of nucleotides such as CAGCAGCAGCAG have been observed to aggregate in the nucleus. The properties of the RNA aggregation is similar to those seen in liquid-liquid phase separated molecules, which can be visualized as oil droplets in water. The densely compact RNA strands will allow small molecules or substrates to pass through the structure while maintaining a different internal environment. Using this idea, we aimed to express RNA containing repeats in bacterial cells, in order to develop an intracellular scaffold. The scaffold will act as the basis of a synthetic organelle, which could be used in both the standardization of pathway activity <i>in vivo</i> and in cell-free systems as a specialised organelle.</div>
</div>
+
                                        </div>
 +
                               
 +
                                <!-- PART 2-->
 +
                                        <div class=text2>
 +
                                        <h1><i>In Vivo</i> Scaffolding</h1>
 +
                                        <div class=text2left>
 +
                                                        <h2>Model Prediction</h2>
 +
                                                        The modelling of the organelle’s kinetics (<a href="https://2017.igem.org/Team:Paris_Bettencourt/Model#secondmodel"> see details for the modeling</a>) showed that when the rate of reaction (k) of A and B composition reaction is low, the homogenous mixture would have a higher rate of production for this non-specific reaction. Although, if k is at a high rate and more specific, the cells with organelles would have an higher rate of production for the reaction of A and B over the situation without it. The model indicates that the organelle prefers higher-constant, specific reactions.
 +
                                                       
 +
                                        </div>
 +
                                        <div class=text2right>
 +
                                                <img id=img1 src="https://static.igem.org/mediawiki/2017/a/ac/RNA_Modelling.png"><span><strong>Fig. 2. </strong>The whole-cell production rate with or without organelle, versus the reaction rate constant of A and B. The model shows the expected performance of the organelle at different constant level (<i>k</i>).</span>
 +
                                        </div>
 +
                                     
 +
                                               
 +
                                        </div>
  
<div id="header">Find me a header</div>
+
                                        <div class=text2>
 +
                                                <div class=text2left><img id=img1 src="https://static.igem.org/mediawiki/2017/6/62/In_vivo_FAFB_System.png"><span><strong>Fig. 3: </strong><strong>A</strong>) A schematic of the construct used to generate RNA aggregates that contain MS2 aptamers. <strong>B</strong>) The non-specific binding of FA and FB will form a complete GFP. <strong>C</strong>) The produced FA with MS2 will be in competition to either bind with FB or the RNA aggregation.</span></div>
 +
                                                <div class=text2right><h2>FA-FB System</h2>The FA-FB system is a visualisation method that uses two components of a split GFP, FA and FB, which can weakly bind together to form a complete GFP. This technology is used to study the protein-protein interaction, or protein-RNA interaction by BiFC. However, the background signal is terribly high in bacteria due to the non-specific binding and leads artifacts even in plants and mammalian cell experiments. We choose a specific version of FA FB (sequence available in part registry) for the testing. They don't bind to each other spontaneously but usually have a high background. For protein-RNA interaction study, the two components are designed to be linked to specific aptamers which bind to their respective domains, allowing the GFP to be reformed at the site of interest. The FA component is expressed an MS2 aptamer, which is a specific bacteriophage binding site that connects an MS2 binding domain. By expressing the CAG repeat sequence with an MS2 binding domain (<strong>fig. 2A</strong>), specific binding between RNA organelle and FA-MS2 fusion protein can occur on the RNA aggregation. Thus, this creates a localization of FA in the cell.</div>
 +
                                        </div>
 +
                               
 +
                                        <div class=text1>
 +
                                        <h1><i>In Vivo</i> Results</h1>
 +
                                        <div>
 +
                                                <img id=img1 style="width:80%; margin-left:10%" src="https://static.igem.org/mediawiki/2017/4/48/RNA_organelle.png">
 +
                                        </div>
 +
                                                <span><strong>Fig. 4: </strong> RNA organelle abolish the non-specific binding signals between FA and FB split GFP fragments caused by the overexpression, and has higher advantages when the synthesis rate is high, confirming our theoretical analysis (<a href="https://2017.igem.org/Team:Paris_Bettencourt/Model#secondmodel"> see details here</a>) : from left to right: flow cytometry results (>50000 cells not gated), microscope images, and the histogram of signals in the same image, with or without the presence of RNA organelle; from top to down: high concentration (full induction) of inducer to no inducer. Strain and construct: BL21AI, FA and FB are under T7lac promoters, and 49xCAG-12xMS2 RNA repeats is under pLtetO-1 promoter, copy numbers are below 50.</span>
 +
                                        </div>
  
<div id=textbody>
+
                                        <div class=text2>
<div id=block1 class=block>
+
                                                  <div class=text2left><img id=img1 src="https://static.igem.org/mediawiki/2017/f/fa/Log_phase_Aggregates.png"><span><strong>Fig. 5: </strong><strong>A</strong>) GFP expression in overnight culture. <strong>B</strong>) Labelled areas of fluorescent intensity of a minimum of 3000 pixel value. <strong>C</strong>) The charted intensity of the regions of interest labelled in B</span></div>
<h1>Sub-title1</h1>
+
                                                  <div class=text2right><img id=img1 src="https://static.igem.org/mediawiki/2017/e/e6/20h_RNA_Aggregates.png"><span><strong>Fig. 6: </strong>A</strong>) GFP expression in 20h culture. <strong>B</strong>) Labelled areas of fluorescent intensity of a minimum of 3000 pixel value. <strong>C</strong>) The charted intensity of the regions of interest labelled in B</span></div>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla aliquet auctor fringilla. Mauris imperdiet est a risus vulputate, at fringilla nisi vehicula. Aliquam sodales enim vel nibh luctus imperdiet. Phasellus eu felis viverra velit viverra viverra id scelerisque elit. Phasellus sed eros nunc. Duis ipsum metus, tempor vel ipsum vitae, iaculis convallis enim. Praesent rutrum elit sit amet consectetur faucibus. Praesent porttitor non ex et lobortis. Donec malesuada sed odio a scelerisque. Aenean tempor enim sed bibendum malesuada. Nunc pharetra tellus sed massa condimentum, ut placerat lectus vestibulum. Donec ornare pulvinar eros, nec laoreet erat egestas at. Morbi consequat maximus.</p>
+
                                        </div>
</div>
+
                                        <div class=text1>
<div id=block2 class=block>
+
                                                Fig 4 shows that as the expression of FA and FB are increased through arabinose induction, we see an increase in the overall GFP signal, which indicates the performance of the non-specific binding of the  FA-FB. For the cultures that were also induced with the formation of the RNA organelle with the FA and FB components, we can see that there is a much lower background signal. This could be explained by the low affinity of FA and FB aggregation. When RNA organelle rapidly recruits all the FA, FB in the cytoplasm is unable to find its substrate. As predicted by our model, the RNA organelle removes non-specific reactions in synthetic systems. Besides, we could also prove that FA, FB binding reaction still occur, though in a very low rate, to make sure the experiments are valid. Because the GFP complementation is an irreversible reaction, and the MS2 coat protein bound components cannot diffuse away from the RNA organelles, we expect to see, in a long-run experiment, the GFP signals accumulate inside the RNA organelle. Fig. 5 and Fig. 6 shows the fluorescences of RNA organelles at exponential phase (3~4 hours after induction) and in late stationary phase (20 hours) respectively, confirming it. This is also a strong evidence to show that the aggregations are long-living as they can still be seen after many hours. The data support the concept that the synthetic organelle may be used in a cell-free system.
<h1>Sub-title2</h1>
+
 
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla aliquet auctor fringilla. Mauris imperdiet est a risus vulputate, at fringilla nisi vehicula. Aliquam sodales enim vel nibh luctus imperdiet. Phasellus eu felis viverra velit viverra viverra id scelerisque elit. Phasellus sed eros nunc. Duis ipsum metus, tempor vel ipsum vitae, iaculis convallis enim. Praesent rutrum elit sit amet consectetur faucibus. Praesent porttitor non ex et lobortis. Donec malesuada sed odio a scelerisque. Aenean tempor enim sed bibendum malesuada. Nunc pharetra tellus sed massa condimentum, ut placerat lectus vestibulum. Donec ornare pulvinar eros, nec laoreet erat egestas at. Morbi consequat maximus. </p>
+
                                        </div>
</div>
+
                               
<div id=block3 class=block>
+
                                       
<h1>Sub-title3</h1>
+
                                               
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec ultrices nulla tincidunt, hendrerit diam at, condimentum sem. Quisque ac condimentum tellus, at viverra risus. Aenean venenatis at est sed rhoncus. Suspendisse libero sapien, dictum quis convallis tempus, dapibus et tortor. Etiam tincidunt ut turpis quis tincidunt. Donec vitae suscipit arcu. Nullam finibus purus leo, sed vestibulum mi sodales a. Ut vestibulum quis metus eu ullamcorper. Morbi elementum tellus eu nibh bibendum, non laoreet lorem molestie. Nam interdum dictum leo, at malesuada nisi fermentum quis. Aliquam cursus non ex vitae euismod. In eget mi et ligula viverra cursus venenatis et justo. Proin sed lacus aliquam, interdum metus a, tempor sapien. Maecenas non cursus sem. Nulla auctor sollicitudin ullamcorper. Pellentesque faucibus sed est in varius. Vestibulum ullamcorper elementum molestie. Maecenas posuere lectus ut placerat volutpat. Vivamus vulputate, nisi in efficitur sodales, felis ex rhoncus neque, sed sollicitudin nibh purus nec tellus. Donec. </p>
+
                                               
</div>
+
                               
<div id=block4 class=block>
+
                                <!-- PART 3-->
<h1>Sub-title4</h1>
+
                                        <div class=text4>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque vel vehicula felis. Aenean non elit magna. Integer tincidunt cursus fringilla. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Quisque tempor vitae sem at varius. Donec sed rutrum justo. Cras ut elementum sem. Cras tempus, nunc eget tempor feugiat, quam diam aliquet nisi, id pharetra mauris tortor vitae nibh. Curabitur id turpis eget nibh vehicula cursus nec et sapien. Aenean laoreet aliquam gravida. Donec a ex tempus, varius augue quis, pharetra massa. Proin in gravida urna. Pellentesque dapibus elit quis enim mattis, a porttitor purus rutrum. Donec eget consectetur nisl, sed commodo dui. Suspendisse lobortis justo ac ornare lacinia. Pellentesque quis arcu justo. Praesent pulvinar, lorem ut consequat tincidunt, augue nunc laoreet orci, quis pharetra arcu augue eu ligula. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque fermentum mattis ipsum, et tincidunt dolor tempus nec. Maecenas ac arcu eu lacus fringilla ornare non ac erat. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Sed vehicula euismod placerat. Ut volutpat felis vitae lorem pulvinar, eget finibus dui molestie. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Nulla egestas est vitae odio sagittis condimentum euismod et magna. Vivamus porttitor diam tortor, quis tincidunt dolor pulvinar quis. Suspendisse tincidunt ornare eros. Nullam at lobortis lectus. Integer sit amet bibendum turpis. Suspendisse enim elit, placerat ac iaculis sed, maximus vel lectus. Praesent fermentum facilisis eros. Pellentesque tincidunt, enim vel porta commodo, justo massa laoreet lorem, ac interdum massa augue in turpis. Fusce elit est, rutrum sit amet velit ac, ultrices pellentesque metus. Cras viverra rutrum eros id vestibulum. Donec at luctus neque, a pellentesque diam. Donec vel congue nibh, in auctor tellus. Duis nisi lectus, placerat vel odio et, dapibus pharetra dui. Mauris sagittis purus non ipsum eleifend, ut interdum neque tincidunt.</span>
+
                                                <h1>Synthesis of CAG Repeats</h1>
</div>
+
                                               
<div id=block5 class=block>
+
                                                <div class=text4left>
<h1>Sub-title5</h1>
+
                                                        <div><img id=img1 src="https://static.igem.org/mediawiki/2017/d/db/RNA_wiki_2.png"></div>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nulla aliquet auctor fringilla. Mauris imperdiet est a risus vulputate, at fringilla nisi vehicula. Aliquam sodales enim vel nibh luctus imperdiet. Phasellus eu felis viverra velit viverra viverra id scelerisque elit. Phasellus sed eros nunc. Duis ipsum metus, tempor vel ipsum vitae, iaculis convallis enim. Praesent rutrum elit sit amet consectetur faucibus. Praesent porttitor non ex et lobortis. Donec malesuada sed odio a scelerisque. Aenean tempor enim sed bibendum malesuada. Nunc pharetra tellus sed massa condimentum, ut placerat lectus vestibulum. Donec ornare pulvinar eros, nec laoreet erat egestas at. Morbi consequat maximus. </p>
+
                                                        <!--An image or you can replace it by text--><span><strong>Fig. 7: </strong>A) The resulting product of the repeat synthesis from random assembly of 10xCAG and 10xCTG nucleotides at initial concentrations of 0μl, 2μl, 3μl and 4μl. B) A schematic representation of the random assembly of the 10xCAG and 10xCTG sequences.</span></div>
</div>
+
                                                <div class=text4right>A collection of repeat sequences was built using two oligonucleotides: 10xCAG and 10xCTG. Through testing a variety of oligonucleotide concentrations and testing a different of PCR conditions, a specific protocol was built to synthesise various lenths of DNA containing CAG repeats. The resulting product appeared as a smear, indicating a range of lengths was created, the product was subsequently transformed into a T7 containing vector in order to produce RNA containing CAG repeats.
 +
                                                </div>
 +
                                        </div>
 
</div>
 
</div>
<!-- If you need more block/subdivision of a block, ask me-->
 
 
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"></script>
 
 
  
 
</body>
 
</body>
  
 +
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"></script>
 
</html>
 
</html>
  

Latest revision as of 03:40, 2 November 2017

RNA Organelle

RNA Aggregation

In synthetic biology, we are often introducing new pathways to bacteria that do not naturally express them, and sometimes even creates new proteins that don't exist before. The novel pathway will produce exotic enzymes and proteins which the host bacteria will not necessarily have the internal environment in order to organise these macromolecular products. Ultimately, this could be detrimental to the performance of both the pathway and the organism itself. Additionally, depending on the organism used, the activity of the pathway can vary and be difficult to characterise against other models used. Thus, we aim to standardize the microenvironmental activity of different pathways within the cell by localising the associated enzymes/proteins in an RNA based structure, leading to the pathway to act in a predictable way, regardless of the organism.

Fig. 1: A.) Representation of single-stranded RNA that forms the liquid-liquid phase separated-like structure. B.) Images of RNA aggregates formed inside the nucleus of different mutant mammalian cells that express RNA containing either the repeats CUG or CAG
In mammalian cells, RNA containing triplet repeats of nucleotides such as CAGCAGCAGCAG have been observed to aggregate in the nucleus. The properties of the RNA aggregation is similar to those seen in liquid-liquid phase separated molecules, which can be visualized as oil droplets in water. The densely compact RNA strands will allow small molecules or substrates to pass through the structure while maintaining a different internal environment. Using this idea, we aimed to express RNA containing repeats in bacterial cells, in order to develop an intracellular scaffold. The scaffold will act as the basis of a synthetic organelle, which could be used in both the standardization of pathway activity in vivo and in cell-free systems as a specialised organelle.

In Vivo Scaffolding

Model Prediction

The modelling of the organelle’s kinetics ( see details for the modeling) showed that when the rate of reaction (k) of A and B composition reaction is low, the homogenous mixture would have a higher rate of production for this non-specific reaction. Although, if k is at a high rate and more specific, the cells with organelles would have an higher rate of production for the reaction of A and B over the situation without it. The model indicates that the organelle prefers higher-constant, specific reactions.
Fig. 2. The whole-cell production rate with or without organelle, versus the reaction rate constant of A and B. The model shows the expected performance of the organelle at different constant level (k).
Fig. 3: A) A schematic of the construct used to generate RNA aggregates that contain MS2 aptamers. B) The non-specific binding of FA and FB will form a complete GFP. C) The produced FA with MS2 will be in competition to either bind with FB or the RNA aggregation.

FA-FB System

The FA-FB system is a visualisation method that uses two components of a split GFP, FA and FB, which can weakly bind together to form a complete GFP. This technology is used to study the protein-protein interaction, or protein-RNA interaction by BiFC. However, the background signal is terribly high in bacteria due to the non-specific binding and leads artifacts even in plants and mammalian cell experiments. We choose a specific version of FA FB (sequence available in part registry) for the testing. They don't bind to each other spontaneously but usually have a high background. For protein-RNA interaction study, the two components are designed to be linked to specific aptamers which bind to their respective domains, allowing the GFP to be reformed at the site of interest. The FA component is expressed an MS2 aptamer, which is a specific bacteriophage binding site that connects an MS2 binding domain. By expressing the CAG repeat sequence with an MS2 binding domain (fig. 2A), specific binding between RNA organelle and FA-MS2 fusion protein can occur on the RNA aggregation. Thus, this creates a localization of FA in the cell.

In Vivo Results

Fig. 4: RNA organelle abolish the non-specific binding signals between FA and FB split GFP fragments caused by the overexpression, and has higher advantages when the synthesis rate is high, confirming our theoretical analysis ( see details here) : from left to right: flow cytometry results (>50000 cells not gated), microscope images, and the histogram of signals in the same image, with or without the presence of RNA organelle; from top to down: high concentration (full induction) of inducer to no inducer. Strain and construct: BL21AI, FA and FB are under T7lac promoters, and 49xCAG-12xMS2 RNA repeats is under pLtetO-1 promoter, copy numbers are below 50.
Fig. 5: A) GFP expression in overnight culture. B) Labelled areas of fluorescent intensity of a minimum of 3000 pixel value. C) The charted intensity of the regions of interest labelled in B
Fig. 6: A) GFP expression in 20h culture. B) Labelled areas of fluorescent intensity of a minimum of 3000 pixel value. C) The charted intensity of the regions of interest labelled in B
Fig 4 shows that as the expression of FA and FB are increased through arabinose induction, we see an increase in the overall GFP signal, which indicates the performance of the non-specific binding of the FA-FB. For the cultures that were also induced with the formation of the RNA organelle with the FA and FB components, we can see that there is a much lower background signal. This could be explained by the low affinity of FA and FB aggregation. When RNA organelle rapidly recruits all the FA, FB in the cytoplasm is unable to find its substrate. As predicted by our model, the RNA organelle removes non-specific reactions in synthetic systems. Besides, we could also prove that FA, FB binding reaction still occur, though in a very low rate, to make sure the experiments are valid. Because the GFP complementation is an irreversible reaction, and the MS2 coat protein bound components cannot diffuse away from the RNA organelles, we expect to see, in a long-run experiment, the GFP signals accumulate inside the RNA organelle. Fig. 5 and Fig. 6 shows the fluorescences of RNA organelles at exponential phase (3~4 hours after induction) and in late stationary phase (20 hours) respectively, confirming it. This is also a strong evidence to show that the aggregations are long-living as they can still be seen after many hours. The data support the concept that the synthetic organelle may be used in a cell-free system.

Synthesis of CAG Repeats

Fig. 7: A) The resulting product of the repeat synthesis from random assembly of 10xCAG and 10xCTG nucleotides at initial concentrations of 0μl, 2μl, 3μl and 4μl. B) A schematic representation of the random assembly of the 10xCAG and 10xCTG sequences.
A collection of repeat sequences was built using two oligonucleotides: 10xCAG and 10xCTG. Through testing a variety of oligonucleotide concentrations and testing a different of PCR conditions, a specific protocol was built to synthesise various lenths of DNA containing CAG repeats. The resulting product appeared as a smear, indicating a range of lengths was created, the product was subsequently transformed into a T7 containing vector in order to produce RNA containing CAG repeats.


Centre for Research and Interdisciplinarity (CRI)
Faculty of Medicine Cochin Port-Royal, South wing, 2nd floor
Paris Descartes University
24, rue du Faubourg Saint Jacques
75014 Paris, France
bettencourt.igem2017@gmail.com