Line 152: | Line 152: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/4/4c/T--William_and_Mary--MCMC-F3.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/4/4c/T--William_and_Mary--MCMC-F3.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 5: We used 100 random parameter sets identified by MCMC to generate 100 individual MCMC estimated parameter value traces (shown in blue). All 100 are indistinguishable from each other. Plotted on top of them is the model simulation using the true parameters (shown in red). | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 5: We used 100 random parameter sets identified by MCMC to generate 100 individual MCMC estimated parameter value traces (shown in blue). All 100 are indistinguishable from each other. Plotted on top of them is the model simulation using the true parameters (shown in red). | ||
</div></figcaption> | </div></figcaption> | ||
Line 167: | Line 167: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/9/9a/T--William_and_Mary--MCMC-F4.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/9/9a/T--William_and_Mary--MCMC-F4.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 6: A kinetic diagram of the Lon-PDT model used for MCMC parameter estimation. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 6: A kinetic diagram of the Lon-PDT model used for MCMC parameter estimation. | ||
Line 177: | Line 177: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/6/62/T--William_and_Mary--MCMC-F5.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/6/62/T--William_and_Mary--MCMC-F5.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 7: This is the same style of graph as Figure 3, but this time using the model depicted in Figure 4l. We used 100 random parameter sets identified by MCMC to generate 100 individual MCMC estimated parameter value traces (shown in blue). All 100 are indistinguishable from each other. Plotted on top of them is the model simulation using the true parameters (shown in red). | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 7: This is the same style of graph as Figure 3, but this time using the model depicted in Figure 4l. We used 100 random parameter sets identified by MCMC to generate 100 individual MCMC estimated parameter value traces (shown in blue). All 100 are indistinguishable from each other. Plotted on top of them is the model simulation using the true parameters (shown in red). | ||
</div></figcaption> | </div></figcaption> | ||
Line 194: | Line 194: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/c/c1/T--William_and_Mary--MCMC-F6.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/c/c1/T--William_and_Mary--MCMC-F6.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 8: Full posterior distributions for Beta_Lon (Lon transcription) and Alpha_Lon (Lon translation). Parameters were allowed to vary from 0 to 100 and estimates span 0.1-0.5 for both parameters, or less than 1% of the exploration space. Not only did we identify the parameters tightly, we also reveal a strong negative correlation between Beta_Lon and Alpha_Lon. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 8: Full posterior distributions for Beta_Lon (Lon transcription) and Alpha_Lon (Lon translation). Parameters were allowed to vary from 0 to 100 and estimates span 0.1-0.5 for both parameters, or less than 1% of the exploration space. Not only did we identify the parameters tightly, we also reveal a strong negative correlation between Beta_Lon and Alpha_Lon. | ||
</div></figcaption> | </div></figcaption> | ||
Line 205: | Line 205: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/b/b4/T--William_and_Mary--MCMC-F7.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/b/b4/T--William_and_Mary--MCMC-F7.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 9: Full posterior distributions for K_min (the minimum affinity for Lon that we measured) and K_max (the maximum affinity for Lon that we measured. Parameters were allowed to vary from 0 to 10 and occupy < .01% of the total parameter space. Not only did we identify the parameters tightly, we also reveal a strong positive correlation between K_max and K_min. This makes sense because when there’s more total Lon in the system, both K_max and K_min need to be lower to account for it, and when there’s less total Lon they both should be higher. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 9: Full posterior distributions for K_min (the minimum affinity for Lon that we measured) and K_max (the maximum affinity for Lon that we measured. Parameters were allowed to vary from 0 to 10 and occupy < .01% of the total parameter space. Not only did we identify the parameters tightly, we also reveal a strong positive correlation between K_max and K_min. This makes sense because when there’s more total Lon in the system, both K_max and K_min need to be lower to account for it, and when there’s less total Lon they both should be higher. | ||
</div></figcaption> | </div></figcaption> | ||
Line 294: | Line 294: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/1/1f/T--William_and_Mary--Sat-1.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/1/1f/T--William_and_Mary--Sat-1.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 10: The effect of protease saturation on the magnitude of speed change when a load protein, F, with identical kinetic parameters to RFP, is expressed at various production rates given by beta_F. The red line represents the production rate of RFP determined by MCMC parameter estimation. The saturation effect only begins to significantly impact the speed when the load protein’s concentration is comparable to that of RFP, after which there is a steep decline in the magnitude of speed change as load protein concentration increases. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 10: The effect of protease saturation on the magnitude of speed change when a load protein, F, with identical kinetic parameters to RFP, is expressed at various production rates given by beta_F. The red line represents the production rate of RFP determined by MCMC parameter estimation. The saturation effect only begins to significantly impact the speed when the load protein’s concentration is comparable to that of RFP, after which there is a steep decline in the magnitude of speed change as load protein concentration increases. | ||
</div></figcaption> | </div></figcaption> | ||
Line 316: | Line 316: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/4/4e/T--William_and_Mary--sat2.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/4/4e/T--William_and_Mary--sat2.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 11: The affinity of the load protein controls the sharpness of the saturation transition but not the location. Affinities of the load protein to Lon were varied to 0.1X and 10X the affinity of the RFP to Lon, which was determined from MCMC parameter estimation. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 11: The affinity of the load protein controls the sharpness of the saturation transition but not the location. Affinities of the load protein to Lon were varied to 0.1X and 10X the affinity of the RFP to Lon, which was determined from MCMC parameter estimation. | ||
</div></figcaption> | </div></figcaption> | ||
Line 330: | Line 330: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/c/c8/T--William_and_Mary--sat-3.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/c/c8/T--William_and_Mary--sat-3.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 12: The proteolysis rate of the load protein controls the location of the saturation transition. Rates were varied to 0.1X and 10X the value of the measured proteolysis rate of mf-Lon, 11.5 1/min [7]. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 12: The proteolysis rate of the load protein controls the location of the saturation transition. Rates were varied to 0.1X and 10X the value of the measured proteolysis rate of mf-Lon, 11.5 1/min [7]. | ||
</div></figcaption> | </div></figcaption> | ||
Line 344: | Line 344: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/8/8c/T--William_and_Mary--sat4.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/8/8c/T--William_and_Mary--sat4.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 13: The saturation transition in a system with two load proteins exhibits a the same qualitative properties as the system with one load protein. The speed change is either at full strength or is completely repressed over the majority of the parameter range, with a brief, sharp transition in parameter space between the two regions. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 13: The saturation transition in a system with two load proteins exhibits a the same qualitative properties as the system with one load protein. The speed change is either at full strength or is completely repressed over the majority of the parameter range, with a brief, sharp transition in parameter space between the two regions. | ||
</div></figcaption> | </div></figcaption> | ||
Line 359: | Line 359: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/a/a9/T--William_and_Mary--sat5.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/a/a9/T--William_and_Mary--sat5.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 14: The properties of the saturation transition do not seem to depend directly on the number of types of load protein in the circuit. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 14: The properties of the saturation transition do not seem to depend directly on the number of types of load protein in the circuit. | ||
</div></figcaption> | </div></figcaption> |
Revision as of 03:43, 2 November 2017
Parameter
Units
MCMC estimate
Beta_R
nM/min
5.22
Alpha_R
1/min
3.21
Beta_L
nM/min
0.27
Alpha_L
1/min
0.32
Gamma_dilution
1/min
0.03
Gamma_RNA
1/min
0.03
K_max
1/(nM*min)
2.3e-05
K_min
1/(nM*min)
3.9e-03