(14 intermediate revisions by 4 users not shown) | |||
Line 33: | Line 33: | ||
− | <div style='background: #808080; margin: 0px | + | <div style='background: #808080; margin: 0px 14% 20px 14%; height:1px;></div> |
<div style='padding-top: 0px;'></div> | <div style='padding-top: 0px;'></div> | ||
− | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' > | + | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >In order to better ensure that our measurements performed on a single reporter gene will be translatable to teams who want to use our pdt system in larger, more complex circuits, we developed a model of protease-driven speed control which accounts for loading and saturation effects on the protease. We then performed Bayesian parameter estimation on our measured datasets with Markov Chain Monte Carlo sampling to parametrize our model specifically to our pdt system. We then used the model to investigate the relationship between protease saturation and speed control, drawing insights that will inform future teams how to better incorporate pdts into their genetic circuit designs. |
+ | |||
</div> | </div> | ||
<div style="padding-top: 40px;"></div> | <div style="padding-top: 40px;"></div> | ||
Line 45: | Line 46: | ||
− | <div style='background: #808080; margin: 0px | + | <div style='background: #808080; margin: 0px 14% 20px 14%; height:1px;></div> |
<div style='padding-top: 0px;'></div> | <div style='padding-top: 0px;'></div> | ||
Line 74: | Line 75: | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
<img src='https://static.igem.org/mediawiki/2017/b/b4/T--William_and_Mary--satmodel.png' width = "50%"/> | <img src='https://static.igem.org/mediawiki/2017/b/b4/T--William_and_Mary--satmodel.png' width = "50%"/> | ||
− | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 2. Our ODE model of protease saturation. Load is represented as a generic protein (F) that competes with RFP (R) for degradation by Lon (L). Tuning the kinetic parameters associated with F, relative to the parameters associated with R and L, represents the amount of load in the circuit. We explicitly account for the bound Lon-protein complexes (C) as species in the model so that the sequestration effects which drive loading and saturation can be directly interrogated. Please see the technical modeling report | + | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 2. Our ODE model of protease saturation. Load is represented as a generic protein (F) that competes with RFP (R) for degradation by Lon (L). Tuning the kinetic parameters associated with F, relative to the parameters associated with R and L, represents the amount of load in the circuit. We explicitly account for the bound Lon-protein complexes (C) as species in the model so that the sequestration effects which drive loading and saturation can be directly interrogated. Please see the technical modeling <a href='https://static.igem.org/mediawiki/2017/f/f7/T--William_and_Mary--MathModel.pdf'><u>report</u></a> for more detailed information about our model’s derivation and analysis. |
</div></figcaption> | </div></figcaption> | ||
</figure> | </figure> | ||
Line 95: | Line 96: | ||
<div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Popular methods for parameter estimation, such as linear and non-linear regression, return point estimates for parameter values that potentially obscure rich information that relies on the correlations between distributions of parameters. However, in aiming to develop a groundwork for a theoretical understanding of speed control, we felt that we could not afford to lose information which could potentially lead to valuable insights. Therefore, we decided to perform a Bayesian parameter estimation to determine our model. | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Popular methods for parameter estimation, such as linear and non-linear regression, return point estimates for parameter values that potentially obscure rich information that relies on the correlations between distributions of parameters. However, in aiming to develop a groundwork for a theoretical understanding of speed control, we felt that we could not afford to lose information which could potentially lead to valuable insights. Therefore, we decided to perform a Bayesian parameter estimation to determine our model. | ||
</div> | </div> | ||
− | <div style='padding-top: | + | |
+ | <div style='padding-top: 40px;'></div> | ||
+ | |||
+ | |||
+ | <div style = 'padding-left: 14%; padding-bottom: 10px;font-size: 25px' ><b>Bayesian Parameter Estimation with MCMC</b></div> | ||
+ | <div style='background: #808080; margin: 0px 14% 20px 14%; height:1px;></div> | ||
+ | <div style='padding-top: 0px;'></div> | ||
<div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Bayes’ theorem can used to turn a mathematical model (which is converted into a statistical model) into a probability distribution for your parameters, known as the posterior distribution [3]. The posterior distribution defines how probable it is that a parameter takes a specific value based on the data observed and any prior information available about the parameter distributions (previous iGEM characterization, published literature, etc.). This method has a clear advantage over regression and maximum likelihood estimation approaches, as it allows you to estimate the entire probability distributions for parameter values instead of a single point estimate. In addition, you can visualize all covariation across parameters by plotting their joint parameter distributions, which leads to additional insights into your experimental system. | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Bayes’ theorem can used to turn a mathematical model (which is converted into a statistical model) into a probability distribution for your parameters, known as the posterior distribution [3]. The posterior distribution defines how probable it is that a parameter takes a specific value based on the data observed and any prior information available about the parameter distributions (previous iGEM characterization, published literature, etc.). This method has a clear advantage over regression and maximum likelihood estimation approaches, as it allows you to estimate the entire probability distributions for parameter values instead of a single point estimate. In addition, you can visualize all covariation across parameters by plotting their joint parameter distributions, which leads to additional insights into your experimental system. | ||
Line 145: | Line 152: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/4/4c/T--William_and_Mary--MCMC-F3.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/4/4c/T--William_and_Mary--MCMC-F3.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 5: We used 100 random parameter sets identified by MCMC to generate 100 individual MCMC estimated parameter value traces (shown in blue). All 100 are indistinguishable from each other. Plotted on top of them is the model simulation using the true parameters (shown in red). | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 5: We used 100 random parameter sets identified by MCMC to generate 100 individual MCMC estimated parameter value traces (shown in blue). All 100 are indistinguishable from each other. Plotted on top of them is the model simulation using the true parameters (shown in red). | ||
</div></figcaption> | </div></figcaption> | ||
Line 153: | Line 160: | ||
− | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' > | + | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >While our MCMC was able to identify parameters for the simple protein expression model shown in Figure 3, we wanted to determine whether or not our Lon ODE model was identifiable (Figure 6). As we are only measuring one output (RFP fluorescence), it’s possible that MCMC sampling cannot differentiate between values like the amount of Lon vs. the affinity of the degradation tag for Lon. We took the same approach as above to first check whether our Lon model was identifiable with only a single observable output. To do that we again simulated a reference timecourse, this time using the model shown in Figure 6, with known parameters and attempted to identify the parameters using MCMC. We now have several free parameters (7), so we have increased the number of walkers (350) and increased the number of burn steps (2000). As shown in Figure 7 we were able to accurately identify the parameters in the Lon-PDT model using only timecourse fluorescent measurements of a single reporter gene. |
</div> | </div> | ||
Line 160: | Line 167: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/9/9a/T--William_and_Mary--MCMC-F4.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/9/9a/T--William_and_Mary--MCMC-F4.png' width = "45%"/> |
− | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure | + | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 6: A kinetic diagram of the Lon-PDT model used for MCMC parameter estimation. |
+ | |||
</div></figcaption> | </div></figcaption> | ||
</figure> | </figure> | ||
</center> | </center> | ||
− | |||
<div style='padding-top: 40px;'></div> | <div style='padding-top: 40px;'></div> | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/6/62/T--William_and_Mary--MCMC-F5.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/6/62/T--William_and_Mary--MCMC-F5.png' width = "45%"/> |
− | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure | + | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 7: This is the same style of graph as Figure 3, but this time using the model depicted in Figure 4l. We used 100 random parameter sets identified by MCMC to generate 100 individual MCMC estimated parameter value traces (shown in blue). All 100 are indistinguishable from each other. Plotted on top of them is the model simulation using the true parameters (shown in red). |
</div></figcaption> | </div></figcaption> | ||
</figure> | </figure> | ||
</center> | </center> | ||
<div style='padding-top: 40px;'></div> | <div style='padding-top: 40px;'></div> | ||
+ | |||
+ | |||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >After confirming our model was identifiable using simulated data, we applied the same MCMC sampling routine to our timecourse fluorescence measurements. We had our MCMC model fit both our weakest tag case (set by K_min) and our strongest tag case (set by K_max) simultaneously, where the only thing it could vary for between two observed datasets was the strength of K. We were able to identify tight posterior distributions for all parameters (values provided in Table 1). In addition, the joint distributions of Beta_Lon and Alpha_Lon and K_min and K_max revealed more information than a single point estimate would allow (Figure 8 and Figure 9). | ||
+ | </div> | ||
+ | |||
Line 182: | Line 194: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/c/c1/T--William_and_Mary--MCMC-F6.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/c/c1/T--William_and_Mary--MCMC-F6.png' width = "45%"/> |
− | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure | + | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 8: Full posterior distributions for Beta_Lon (Lon transcription) and Alpha_Lon (Lon translation). Parameters were allowed to vary from 0 to 100 and estimates span 0.1-0.5 for both parameters, or less than 1% of the exploration space. Not only did we identify the parameters tightly, we also reveal a strong negative correlation between Beta_Lon and Alpha_Lon. |
</div></figcaption> | </div></figcaption> | ||
</figure> | </figure> | ||
Line 193: | Line 205: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/b/b4/T--William_and_Mary--MCMC-F7.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/b/b4/T--William_and_Mary--MCMC-F7.png' width = "45%"/> |
− | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure | + | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 9: Full posterior distributions for K_min (the minimum affinity for Lon that we measured) and K_max (the maximum affinity for Lon that we measured. Parameters were allowed to vary from 0 to 10 and occupy < .01% of the total parameter space. Not only did we identify the parameters tightly, we also reveal a strong positive correlation between K_max and K_min. This makes sense because when there’s more total Lon in the system, both K_max and K_min need to be lower to account for it, and when there’s less total Lon they both should be higher. |
</div></figcaption> | </div></figcaption> | ||
</figure> | </figure> | ||
Line 200: | Line 212: | ||
<div style='padding-top: 40px;'></div> | <div style='padding-top: 40px;'></div> | ||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >We found that Alpha_Lon and Beta_Lon are negatively correlated (r = -0.8, p=0), suggesting that an important quantity in the model is the total amount of Lon (set by the product of Alpha_Lon and Beta_Lon). Our results from the joint distribution of K_min and K_max are strongly positively correlated (r=1, p=0), which strengthens our intuition of the model. As the total amount of Lon is fixed for each pair of K_min and K_max tested, if there is an increased amount of Lon both K_min and K_max values will be lower, and if there is a reduced amount of Lon both K_min and K_max will be higher. | ||
+ | </div> | ||
+ | <div style='padding-top: 40px;'></div> | ||
+ | <div> | ||
+ | <table style='width: 75%; margin: 0px 14% 20px 14%;'> | ||
+ | <thead> | ||
+ | <tr> | ||
+ | <th>Parameter</th> | ||
+ | <th>Units</th> | ||
+ | <th>MCMC estimate</th> | ||
+ | </tr> | ||
+ | </thead> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td>Beta_R</td> | ||
+ | <td>nM/min</td> | ||
+ | <td>5.22</td> </tr> | ||
+ | <tr> | ||
+ | <td>Alpha_R</td> | ||
+ | <td>1/min</td> | ||
+ | <td>3.21</td></tr> | ||
+ | <tr> | ||
+ | <td>Beta_L</td> | ||
+ | <td>nM/min</td> | ||
+ | <td>0.27</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Alpha_L</td> | ||
+ | <td>1/min</td> | ||
+ | <td>0.32</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Gamma_dilution</td> | ||
+ | <td>1/min</td> | ||
+ | <td>0.03</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>Gamma_RNA</td> | ||
+ | <td>1/min</td> | ||
+ | <td>0.03</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>K_max</td> | ||
+ | <td>1/(nM*min)</td> | ||
+ | <td>2.3e-05</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td>K_min</td> | ||
+ | <td>1/(nM*min)</td> | ||
+ | <td>3.9e-03</td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
+ | <center><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Table 1: Parameter estimates from MCMC fitting. All MCMC estimates are the median of full posterior distribution. As all of our parameters are fit well, we believe these estimates are much more informative for our saturation model than pulling values from the literature. | ||
+ | </div></center> | ||
+ | </div> | ||
<div style='padding-top: 40px;'></div> | <div style='padding-top: 40px;'></div> | ||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' > | ||
+ | By rigorously analyzing our timecourse degradation experiments using bayesian parameter estimation, we were able to obtain parameter values that better informed our saturation model. Further, we hope that future iGEM teams will build on this work and move away from regression-based approaches and towards the rich world of Bayesian inference for gene expression models. The Python-Emcee-BioSCRAPE pipeline is a completely open-source approach to performing sophisticated analysis in a fast and efficient way and will help to better inform predictive models that guide the next generation of synthetic biology. | ||
+ | </div> | ||
+ | |||
+ | <div style='padding-top: 40px;'></div> | ||
<div style = 'padding-left: 14%; padding-bottom: 10px;font-size: 25px' ><b>Protease Saturation Model</b></div> | <div style = 'padding-left: 14%; padding-bottom: 10px;font-size: 25px' ><b>Protease Saturation Model</b></div> | ||
− | <div style='background: #808080; margin: 0px | + | <div style='background: #808080; margin: 0px 14% 20px 14%; height:1px;></div> |
<div style='padding-top: 0px;'></div> | <div style='padding-top: 0px;'></div> | ||
− | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' > | + | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Now that we have obtained direct estimates of our kinetic parameters using MCMC, we can now use our model to make assessments about the effect of saturation on our speed measurements, with the confidence that we have maximized our potential to obtain insights that will be directly relevant to the use of our pdt system. |
</div> | </div> | ||
+ | <div style='padding-top: 15px;'></div> | ||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >In order to investigate the effect of saturation on speed, we added in a load protein into our ODE model that effectively sequesters Lon away from RFP, decreasing its ability to degrade RFP, and hence reducing the change in RFP’s expression speed. By varying the production rate of this load protein over a large range of values, we can observe the system’s transition from an unsaturated state to a saturated state where the addition of a pdt does not confer any significant change in RFP’s speed. Based on this understanding of saturation, we formulated our intuitive understanding into a quantitative measure by defining the Fold Increase in Speed for a given choice of parameters as the ratio between the time to half max for a simulated untagged RFP and the time to half max for a simulated RFP tagged with pdt A. In the limit of this ratio approaching 1, there is no difference in speed between the two pdt conditions so the system is completely saturated (Figure 10). | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div style='padding-top: 40px;'></div> | ||
+ | |||
+ | <center> | ||
+ | <figure style='padding-left: px;'> | ||
+ | <img src='https://static.igem.org/mediawiki/2017/1/1f/T--William_and_Mary--Sat-1.png' width = "45%"/> | ||
+ | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 10: The effect of protease saturation on the magnitude of speed change when a load protein, F, with identical kinetic parameters to RFP, is expressed at various production rates given by beta_F. The red line represents the production rate of RFP determined by MCMC parameter estimation. The saturation effect only begins to significantly impact the speed when the load protein’s concentration is comparable to that of RFP, after which there is a steep decline in the magnitude of speed change as load protein concentration increases. | ||
+ | </div></figcaption> | ||
+ | </figure> | ||
+ | </center> | ||
+ | <div style='padding-top: 40px;'></div> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' > | ||
+ | We first investigated the saturation effect induced by a load protein with kinetic parameter values which are identical to that of the RFP (Fig 10). We observed a sharp transition from the unsaturated state to the saturated state, which occurred when the production rate of the load protein is equal to that of the RFP. This is an interesting result as it implies that, at least in this specification of the system where the load protein is biochemically very similar to the reporter protein, that the damping of speed change by protease saturation is closer to an all-or-none effect than a gradual loading of the protease. | ||
+ | </div> | ||
+ | <div style='padding-top: 15px;'></div> | ||
+ | |||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' > | ||
+ | We then proceeded to ask whether tuning other properties of the load protein would alter the nature of this transition. In particular, we investigated the effect of varying the affinity of the load protein to Lon in the above simulation. This affinity is a parameter which can be directly tuned during the design of the circuit by selecting a particular pdt. Interestingly, we found that varying the affinity of the load protein by an order of magnitude in either direction did not significantly vary the location of the saturation transition, but that it instead controlled the sharpness of the transition (Figure 11). | ||
+ | </div> | ||
+ | |||
+ | <div style='padding-top: 40px;'></div> | ||
+ | <center> | ||
+ | <figure style='padding-left: px;'> | ||
+ | <img src='https://static.igem.org/mediawiki/2017/4/4e/T--William_and_Mary--sat2.png' width = "45%"/> | ||
+ | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 11: The affinity of the load protein controls the sharpness of the saturation transition but not the location. Affinities of the load protein to Lon were varied to 0.1X and 10X the affinity of the RFP to Lon, which was determined from MCMC parameter estimation. | ||
+ | </div></figcaption> | ||
+ | </figure> | ||
+ | </center> | ||
+ | <div style='padding-top: 40px;'></div> | ||
+ | |||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' > | ||
+ | We did find, however, that the location of the transition would shift as a function of the proteolysis rate of the load protein (Figure 12). If the proteolysis rate is lower, the Lon remains bound to the load protein for a longer time, effectively amplifying the sequestration of the Lon away from RFP. Because of this, a lower concentration of load protein with a low proteolysis rate is able to induce a level of protease saturation comparable to a higher concentration of another load protein with a high proteolysis rate. This result implies that teams who wish to use our pdt system to tag large, bulky proteins such as dCas9 should take caution and perform additional characterization on the load levels of their circuit components in the initial phases of their circuit design, to ensure that our measurements of speed control will translate accurately to their circuit. | ||
+ | </div> | ||
+ | |||
+ | <div style='padding-top: 40px;'></div> | ||
+ | <center> | ||
+ | <figure style='padding-left: px;'> | ||
+ | <img src='https://static.igem.org/mediawiki/2017/c/c8/T--William_and_Mary--sat-3.png' width = "45%"/> | ||
+ | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 12: The proteolysis rate of the load protein controls the location of the saturation transition. Rates were varied to 0.1X and 10X the value of the measured proteolysis rate of mf-Lon, 11.5 1/min [7]. | ||
+ | </div></figcaption> | ||
+ | </figure> | ||
+ | </center> | ||
+ | <div style='padding-top: 40px;'></div> | ||
+ | |||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' > | ||
+ | Finally, we wanted to determine whether the functional quantity driving the saturation transition was explicitly dependent on the number of types of load proteins, or whether the transition was driven entirely by the total load placed on the protease regardless of the number of proteins making up that load. To address this distinction, we added a second load protein into our model and simulated the result of the three-way competition between RFP and the two load protein for degradation by Lon (Figure 13). | ||
+ | </div> | ||
+ | |||
+ | <div style='padding-top: 40px;'></div> | ||
+ | <center> | ||
+ | <figure style='padding-left: px;'> | ||
+ | <img src='https://static.igem.org/mediawiki/2017/8/8c/T--William_and_Mary--sat4.png' width = "45%"/> | ||
+ | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 13: The saturation transition in a system with two load proteins exhibits a the same qualitative properties as the system with one load protein. The speed change is either at full strength or is completely repressed over the majority of the parameter range, with a brief, sharp transition in parameter space between the two regions. | ||
+ | </div></figcaption> | ||
+ | </figure> | ||
+ | </center> | ||
+ | <div style='padding-top: 40px;'></div> | ||
+ | |||
+ | |||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' > | ||
+ | We then compared the system with two load proteins to a system with one load protein with an affinity 2X stronger than each of the individuals. We found that the saturation transition was very similar in the two conditions (Fig 14). This suggests that, at least in this simple case comparing one against two load proteins, there is no intrinsic additional property conferred by the inclusion of an additional protein in the circuit, and that teams should be able to design their circuits by accounting for total load on their protease rather than having to enumerate each type of protein individually. | ||
+ | </div> | ||
+ | |||
+ | <div style='padding-top: 40px;'></div> | ||
+ | <center> | ||
+ | <figure style='padding-left: px;'> | ||
+ | <img src='https://static.igem.org/mediawiki/2017/a/a9/T--William_and_Mary--sat5.png' width = "60%"/> | ||
+ | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 14: The properties of the saturation transition do not seem to depend directly on the number of types of load protein in the circuit. | ||
+ | </div></figcaption> | ||
+ | </figure> | ||
+ | </center> | ||
+ | <div style='padding-top: 40px;'></div> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <div style = 'padding-left: 14%; padding-bottom: 10px;font-size: 25px' ><b>Discussion</b></div> | ||
+ | <div style='background: #808080; margin: 0px 14% 20px 14%; height:1px;></div> | ||
+ | <div style='padding-top: 0px;'></div> | ||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Our modeling and analysis was focused to achieve a better theoretical grounding of the effect of load and protease saturation on the speed control provided by our pdt system. By integrating our saturation model with bayesian parameter estimation from the experimental data we collected, we were able to provide design considerations for future iGEM team who will build upon our work, building increasingly complex circuits that rely on our effective speed increases. | ||
+ | </div> | ||
+ | |||
+ | <div style='padding-top: 15px;'></div> | ||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Our hope is that future iGEM teams will not only use our pdt system to control the speed of their genes and the dynamical properties of their circuits, but also will both use and build upon our theoretical framework for understanding the effect of saturation on protease-driven speed control. | ||
+ | </div> | ||
+ | |||
+ | <div style='padding-top: 60px;'></div> | ||
+ | |||
+ | <!---References-----> | ||
+ | |||
+ | |||
+ | |||
+ | <div style = 'padding-left: 14%; padding-bottom: 10px;font-size: 25px' ><b>References</b></div> | ||
+ | |||
+ | <div style='background: #808080; margin: 0px 14% 20px 14%; height:1px;></div> | ||
+ | |||
+ | <div style='padding-top: 0px;'></div> | ||
+ | |||
+ | <div style='padding-top: 15px;'></div> | ||
+ | |||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' >[1] Cameron DE, Collins JJ. Tunable protein degradation in bacteria. Nature biotechnology. 2014 Dec 1;32(12):1276-81. | ||
+ | </div> | ||
+ | |||
+ | <div style='padding-top: 15px;'></div> | ||
+ | |||
+ | |||
+ | |||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' >[2] McBride, Cameron, and Domitilla Del Vecchio. "Analyzing and exploiting the effects of protease sharing in genetic circuits." Proceedings of the 20th World Congress of International Federation of Automatic Control (IFAC). 2017 | ||
+ | </div> | ||
+ | <div style='padding-top: 15px;'></div> | ||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' > | ||
+ | [3] Jaynes, Edwin T. Probability theory: The logic of science. Cambridge university press, 2003.</div> | ||
+ | |||
+ | <div style='padding-top: 15px;'></div> | ||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' > | ||
+ | [4] Foreman-Mackey, Daniel, et al. "emcee: the MCMC hammer." Publications of the Astronomical Society of the Pacific 125.925 (2013): 306. | ||
+ | </div> | ||
+ | <div style='padding-top: 15px;'></div> | ||
+ | |||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' > | ||
+ | [5] Swaminathan, Anandh, Victoria Hsiao, and Richard M. Murray. "Quantitative Modeling of Integrase Dynamics Using a Novel Python Toolbox for Parameter Inference in Synthetic Biology." bioRxiv (2017): 121152. | ||
+ | </div> | ||
+ | |||
+ | <div style='padding-top: 15px;'></div> | ||
+ | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' > | ||
+ | [6] Swaminathan, Anandh, and Richard M. Murray. "Identification of Markov Chains From Distributional Measurements and Applications to Systems Biology." IFAC Proceedings Volumes 47.3 (2014): 4400-4405. | ||
+ | </div> | ||
+ | |||
+ | <div style='padding-top: 15px;'></div> | ||
+ | <div style = 'padding-right:14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' > | ||
+ | [7] Gur E, Sauer RT. Evolution of the ssrA degradation tag in Mycoplasma: specificity switch to a different protease. Proceedings of the Natural Academy of Sciences. 2008 Oct 21; 105(42): 16113-8. | ||
+ | </div> | ||
Latest revision as of 03:44, 2 November 2017
Parameter
Units
MCMC estimate
Beta_R
nM/min
5.22
Alpha_R
1/min
3.21
Beta_L
nM/min
0.27
Alpha_L
1/min
0.32
Gamma_dilution
1/min
0.03
Gamma_RNA
1/min
0.03
K_max
1/(nM*min)
2.3e-05
K_min
1/(nM*min)
3.9e-03