(7 intermediate revisions by 4 users not shown) | |||
Line 33: | Line 33: | ||
− | <div style='background: #808080; margin: 0px | + | <div style='background: #808080; margin: 0px 14% 20px 14%; height:1px;></div> |
<div style='padding-top: 0px;'></div> | <div style='padding-top: 0px;'></div> | ||
− | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' > | + | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >In order to better ensure that our measurements performed on a single reporter gene will be translatable to teams who want to use our pdt system in larger, more complex circuits, we developed a model of protease-driven speed control which accounts for loading and saturation effects on the protease. We then performed Bayesian parameter estimation on our measured datasets with Markov Chain Monte Carlo sampling to parametrize our model specifically to our pdt system. We then used the model to investigate the relationship between protease saturation and speed control, drawing insights that will inform future teams how to better incorporate pdts into their genetic circuit designs. |
+ | |||
</div> | </div> | ||
<div style="padding-top: 40px;"></div> | <div style="padding-top: 40px;"></div> | ||
Line 45: | Line 46: | ||
− | <div style='background: #808080; margin: 0px | + | <div style='background: #808080; margin: 0px 14% 20px 14%; height:1px;></div> |
<div style='padding-top: 0px;'></div> | <div style='padding-top: 0px;'></div> | ||
Line 74: | Line 75: | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
<img src='https://static.igem.org/mediawiki/2017/b/b4/T--William_and_Mary--satmodel.png' width = "50%"/> | <img src='https://static.igem.org/mediawiki/2017/b/b4/T--William_and_Mary--satmodel.png' width = "50%"/> | ||
− | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 2. Our ODE model of protease saturation. Load is represented as a generic protein (F) that competes with RFP (R) for degradation by Lon (L). Tuning the kinetic parameters associated with F, relative to the parameters associated with R and L, represents the amount of load in the circuit. We explicitly account for the bound Lon-protein complexes (C) as species in the model so that the sequestration effects which drive loading and saturation can be directly interrogated. Please see the technical modeling report | + | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 2. Our ODE model of protease saturation. Load is represented as a generic protein (F) that competes with RFP (R) for degradation by Lon (L). Tuning the kinetic parameters associated with F, relative to the parameters associated with R and L, represents the amount of load in the circuit. We explicitly account for the bound Lon-protein complexes (C) as species in the model so that the sequestration effects which drive loading and saturation can be directly interrogated. Please see the technical modeling <a href='https://static.igem.org/mediawiki/2017/f/f7/T--William_and_Mary--MathModel.pdf'><u>report</u></a> for more detailed information about our model’s derivation and analysis. |
</div></figcaption> | </div></figcaption> | ||
</figure> | </figure> | ||
Line 95: | Line 96: | ||
<div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Popular methods for parameter estimation, such as linear and non-linear regression, return point estimates for parameter values that potentially obscure rich information that relies on the correlations between distributions of parameters. However, in aiming to develop a groundwork for a theoretical understanding of speed control, we felt that we could not afford to lose information which could potentially lead to valuable insights. Therefore, we decided to perform a Bayesian parameter estimation to determine our model. | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Popular methods for parameter estimation, such as linear and non-linear regression, return point estimates for parameter values that potentially obscure rich information that relies on the correlations between distributions of parameters. However, in aiming to develop a groundwork for a theoretical understanding of speed control, we felt that we could not afford to lose information which could potentially lead to valuable insights. Therefore, we decided to perform a Bayesian parameter estimation to determine our model. | ||
</div> | </div> | ||
− | <div style='padding-top: | + | |
+ | <div style='padding-top: 40px;'></div> | ||
+ | |||
+ | |||
+ | <div style = 'padding-left: 14%; padding-bottom: 10px;font-size: 25px' ><b>Bayesian Parameter Estimation with MCMC</b></div> | ||
+ | <div style='background: #808080; margin: 0px 14% 20px 14%; height:1px;></div> | ||
+ | <div style='padding-top: 0px;'></div> | ||
<div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Bayes’ theorem can used to turn a mathematical model (which is converted into a statistical model) into a probability distribution for your parameters, known as the posterior distribution [3]. The posterior distribution defines how probable it is that a parameter takes a specific value based on the data observed and any prior information available about the parameter distributions (previous iGEM characterization, published literature, etc.). This method has a clear advantage over regression and maximum likelihood estimation approaches, as it allows you to estimate the entire probability distributions for parameter values instead of a single point estimate. In addition, you can visualize all covariation across parameters by plotting their joint parameter distributions, which leads to additional insights into your experimental system. | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Bayes’ theorem can used to turn a mathematical model (which is converted into a statistical model) into a probability distribution for your parameters, known as the posterior distribution [3]. The posterior distribution defines how probable it is that a parameter takes a specific value based on the data observed and any prior information available about the parameter distributions (previous iGEM characterization, published literature, etc.). This method has a clear advantage over regression and maximum likelihood estimation approaches, as it allows you to estimate the entire probability distributions for parameter values instead of a single point estimate. In addition, you can visualize all covariation across parameters by plotting their joint parameter distributions, which leads to additional insights into your experimental system. | ||
Line 145: | Line 152: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/4/4c/T--William_and_Mary--MCMC-F3.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/4/4c/T--William_and_Mary--MCMC-F3.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 5: We used 100 random parameter sets identified by MCMC to generate 100 individual MCMC estimated parameter value traces (shown in blue). All 100 are indistinguishable from each other. Plotted on top of them is the model simulation using the true parameters (shown in red). | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 5: We used 100 random parameter sets identified by MCMC to generate 100 individual MCMC estimated parameter value traces (shown in blue). All 100 are indistinguishable from each other. Plotted on top of them is the model simulation using the true parameters (shown in red). | ||
</div></figcaption> | </div></figcaption> | ||
Line 160: | Line 167: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/9/9a/T--William_and_Mary--MCMC-F4.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/9/9a/T--William_and_Mary--MCMC-F4.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 6: A kinetic diagram of the Lon-PDT model used for MCMC parameter estimation. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 6: A kinetic diagram of the Lon-PDT model used for MCMC parameter estimation. | ||
Line 170: | Line 177: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/6/62/T--William_and_Mary--MCMC-F5.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/6/62/T--William_and_Mary--MCMC-F5.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 7: This is the same style of graph as Figure 3, but this time using the model depicted in Figure 4l. We used 100 random parameter sets identified by MCMC to generate 100 individual MCMC estimated parameter value traces (shown in blue). All 100 are indistinguishable from each other. Plotted on top of them is the model simulation using the true parameters (shown in red). | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 7: This is the same style of graph as Figure 3, but this time using the model depicted in Figure 4l. We used 100 random parameter sets identified by MCMC to generate 100 individual MCMC estimated parameter value traces (shown in blue). All 100 are indistinguishable from each other. Plotted on top of them is the model simulation using the true parameters (shown in red). | ||
</div></figcaption> | </div></figcaption> | ||
Line 187: | Line 194: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/c/c1/T--William_and_Mary--MCMC-F6.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/c/c1/T--William_and_Mary--MCMC-F6.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 8: Full posterior distributions for Beta_Lon (Lon transcription) and Alpha_Lon (Lon translation). Parameters were allowed to vary from 0 to 100 and estimates span 0.1-0.5 for both parameters, or less than 1% of the exploration space. Not only did we identify the parameters tightly, we also reveal a strong negative correlation between Beta_Lon and Alpha_Lon. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 8: Full posterior distributions for Beta_Lon (Lon transcription) and Alpha_Lon (Lon translation). Parameters were allowed to vary from 0 to 100 and estimates span 0.1-0.5 for both parameters, or less than 1% of the exploration space. Not only did we identify the parameters tightly, we also reveal a strong negative correlation between Beta_Lon and Alpha_Lon. | ||
</div></figcaption> | </div></figcaption> | ||
Line 198: | Line 205: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/b/b4/T--William_and_Mary--MCMC-F7.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/b/b4/T--William_and_Mary--MCMC-F7.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 9: Full posterior distributions for K_min (the minimum affinity for Lon that we measured) and K_max (the maximum affinity for Lon that we measured. Parameters were allowed to vary from 0 to 10 and occupy < .01% of the total parameter space. Not only did we identify the parameters tightly, we also reveal a strong positive correlation between K_max and K_min. This makes sense because when there’s more total Lon in the system, both K_max and K_min need to be lower to account for it, and when there’s less total Lon they both should be higher. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 9: Full posterior distributions for K_min (the minimum affinity for Lon that we measured) and K_max (the maximum affinity for Lon that we measured. Parameters were allowed to vary from 0 to 10 and occupy < .01% of the total parameter space. Not only did we identify the parameters tightly, we also reveal a strong positive correlation between K_max and K_min. This makes sense because when there’s more total Lon in the system, both K_max and K_min need to be lower to account for it, and when there’s less total Lon they both should be higher. | ||
</div></figcaption> | </div></figcaption> | ||
Line 210: | Line 217: | ||
<div style='padding-top: 40px;'></div> | <div style='padding-top: 40px;'></div> | ||
<div> | <div> | ||
− | <table style='width: 75%; margin: 0px | + | <table style='width: 75%; margin: 0px 14% 20px 14%;'> |
<thead> | <thead> | ||
<tr> | <tr> | ||
Line 222: | Line 229: | ||
<td>Beta_R</td> | <td>Beta_R</td> | ||
<td>nM/min</td> | <td>nM/min</td> | ||
− | <td>5.22/td> </tr> | + | <td>5.22</td> </tr> |
<tr> | <tr> | ||
<td>Alpha_R</td> | <td>Alpha_R</td> | ||
Line 249: | Line 256: | ||
<tr> | <tr> | ||
<td>K_max</td> | <td>K_max</td> | ||
− | <td>1/nM*min</td> | + | <td>1/(nM*min)</td> |
<td>2.3e-05</td> | <td>2.3e-05</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td>K_min</td> | <td>K_min</td> | ||
− | <td>1/nM*min</td> | + | <td>1/(nM*min)</td> |
<td>3.9e-03</td> | <td>3.9e-03</td> | ||
</tr> | </tr> | ||
Line 272: | Line 279: | ||
<div style = 'padding-left: 14%; padding-bottom: 10px;font-size: 25px' ><b>Protease Saturation Model</b></div> | <div style = 'padding-left: 14%; padding-bottom: 10px;font-size: 25px' ><b>Protease Saturation Model</b></div> | ||
− | <div style='background: #808080; margin: 0px | + | <div style='background: #808080; margin: 0px 14% 20px 14%; height:1px;></div> |
<div style='padding-top: 0px;'></div> | <div style='padding-top: 0px;'></div> | ||
<div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Now that we have obtained direct estimates of our kinetic parameters using MCMC, we can now use our model to make assessments about the effect of saturation on our speed measurements, with the confidence that we have maximized our potential to obtain insights that will be directly relevant to the use of our pdt system. | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Now that we have obtained direct estimates of our kinetic parameters using MCMC, we can now use our model to make assessments about the effect of saturation on our speed measurements, with the confidence that we have maximized our potential to obtain insights that will be directly relevant to the use of our pdt system. | ||
Line 287: | Line 294: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/1/1f/T--William_and_Mary--Sat-1.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/1/1f/T--William_and_Mary--Sat-1.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 10: The effect of protease saturation on the magnitude of speed change when a load protein, F, with identical kinetic parameters to RFP, is expressed at various production rates given by beta_F. The red line represents the production rate of RFP determined by MCMC parameter estimation. The saturation effect only begins to significantly impact the speed when the load protein’s concentration is comparable to that of RFP, after which there is a steep decline in the magnitude of speed change as load protein concentration increases. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 10: The effect of protease saturation on the magnitude of speed change when a load protein, F, with identical kinetic parameters to RFP, is expressed at various production rates given by beta_F. The red line represents the production rate of RFP determined by MCMC parameter estimation. The saturation effect only begins to significantly impact the speed when the load protein’s concentration is comparable to that of RFP, after which there is a steep decline in the magnitude of speed change as load protein concentration increases. | ||
</div></figcaption> | </div></figcaption> | ||
Line 309: | Line 316: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/4/4e/T--William_and_Mary--sat2.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/4/4e/T--William_and_Mary--sat2.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 11: The affinity of the load protein controls the sharpness of the saturation transition but not the location. Affinities of the load protein to Lon were varied to 0.1X and 10X the affinity of the RFP to Lon, which was determined from MCMC parameter estimation. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 11: The affinity of the load protein controls the sharpness of the saturation transition but not the location. Affinities of the load protein to Lon were varied to 0.1X and 10X the affinity of the RFP to Lon, which was determined from MCMC parameter estimation. | ||
</div></figcaption> | </div></figcaption> | ||
Line 323: | Line 330: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/c/c8/T--William_and_Mary--sat-3.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/c/c8/T--William_and_Mary--sat-3.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 12: The proteolysis rate of the load protein controls the location of the saturation transition. Rates were varied to 0.1X and 10X the value of the measured proteolysis rate of mf-Lon, 11.5 1/min [7]. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 12: The proteolysis rate of the load protein controls the location of the saturation transition. Rates were varied to 0.1X and 10X the value of the measured proteolysis rate of mf-Lon, 11.5 1/min [7]. | ||
</div></figcaption> | </div></figcaption> | ||
Line 337: | Line 344: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/8/8c/T--William_and_Mary--sat4.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/8/8c/T--William_and_Mary--sat4.png' width = "45%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 13: The saturation transition in a system with two load proteins exhibits a the same qualitative properties as the system with one load protein. The speed change is either at full strength or is completely repressed over the majority of the parameter range, with a brief, sharp transition in parameter space between the two regions. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 13: The saturation transition in a system with two load proteins exhibits a the same qualitative properties as the system with one load protein. The speed change is either at full strength or is completely repressed over the majority of the parameter range, with a brief, sharp transition in parameter space between the two regions. | ||
</div></figcaption> | </div></figcaption> | ||
Line 352: | Line 359: | ||
<center> | <center> | ||
<figure style='padding-left: px;'> | <figure style='padding-left: px;'> | ||
− | <img src='https://static.igem.org/mediawiki/2017/a/a9/T--William_and_Mary--sat5.png' width = " | + | <img src='https://static.igem.org/mediawiki/2017/a/a9/T--William_and_Mary--sat5.png' width = "60%"/> |
<figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 14: The properties of the saturation transition do not seem to depend directly on the number of types of load protein in the circuit. | <figcaption><div style='padding-left: 20%;padding-right:20%; padding-top: 15px; color: #808080; font-size: 14px;'>Figure 14: The properties of the saturation transition do not seem to depend directly on the number of types of load protein in the circuit. | ||
</div></figcaption> | </div></figcaption> | ||
Line 363: | Line 370: | ||
<div style = 'padding-left: 14%; padding-bottom: 10px;font-size: 25px' ><b>Discussion</b></div> | <div style = 'padding-left: 14%; padding-bottom: 10px;font-size: 25px' ><b>Discussion</b></div> | ||
− | <div style='background: #808080; margin: 0px | + | <div style='background: #808080; margin: 0px 14% 20px 14%; height:1px;></div> |
<div style='padding-top: 0px;'></div> | <div style='padding-top: 0px;'></div> | ||
<div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Our modeling and analysis was focused to achieve a better theoretical grounding of the effect of load and protease saturation on the speed control provided by our pdt system. By integrating our saturation model with bayesian parameter estimation from the experimental data we collected, we were able to provide design considerations for future iGEM team who will build upon our work, building increasingly complex circuits that rely on our effective speed increases. | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 50px;line-height: 25px;' >Our modeling and analysis was focused to achieve a better theoretical grounding of the effect of load and protease saturation on the speed control provided by our pdt system. By integrating our saturation model with bayesian parameter estimation from the experimental data we collected, we were able to provide design considerations for future iGEM team who will build upon our work, building increasingly complex circuits that rely on our effective speed increases. | ||
Line 378: | Line 385: | ||
− | <div style = 'padding-left: | + | <div style = 'padding-left: 14%; padding-bottom: 10px;font-size: 25px' ><b>References</b></div> |
− | <div style='background: #808080; margin: 0px | + | <div style='background: #808080; margin: 0px 14% 20px 14%; height:1px;></div> |
<div style='padding-top: 0px;'></div> | <div style='padding-top: 0px;'></div> | ||
− | <div style='padding-top: | + | <div style='padding-top: 15px;'></div> |
− | <div style = 'padding-right: | + | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' >[1] Cameron DE, Collins JJ. Tunable protein degradation in bacteria. Nature biotechnology. 2014 Dec 1;32(12):1276-81. |
</div> | </div> | ||
Line 393: | Line 400: | ||
− | <div style = 'padding-right: | + | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' >[2] McBride, Cameron, and Domitilla Del Vecchio. "Analyzing and exploiting the effects of protease sharing in genetic circuits." Proceedings of the 20th World Congress of International Federation of Automatic Control (IFAC). 2017 |
</div> | </div> | ||
<div style='padding-top: 15px;'></div> | <div style='padding-top: 15px;'></div> | ||
− | <div style = 'padding-right: | + | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' > |
[3] Jaynes, Edwin T. Probability theory: The logic of science. Cambridge university press, 2003.</div> | [3] Jaynes, Edwin T. Probability theory: The logic of science. Cambridge university press, 2003.</div> | ||
<div style='padding-top: 15px;'></div> | <div style='padding-top: 15px;'></div> | ||
− | <div style = 'padding-right: | + | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' > |
[4] Foreman-Mackey, Daniel, et al. "emcee: the MCMC hammer." Publications of the Astronomical Society of the Pacific 125.925 (2013): 306. | [4] Foreman-Mackey, Daniel, et al. "emcee: the MCMC hammer." Publications of the Astronomical Society of the Pacific 125.925 (2013): 306. | ||
</div> | </div> | ||
<div style='padding-top: 15px;'></div> | <div style='padding-top: 15px;'></div> | ||
− | <div style = 'padding-right: | + | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' > |
[5] Swaminathan, Anandh, Victoria Hsiao, and Richard M. Murray. "Quantitative Modeling of Integrase Dynamics Using a Novel Python Toolbox for Parameter Inference in Synthetic Biology." bioRxiv (2017): 121152. | [5] Swaminathan, Anandh, Victoria Hsiao, and Richard M. Murray. "Quantitative Modeling of Integrase Dynamics Using a Novel Python Toolbox for Parameter Inference in Synthetic Biology." bioRxiv (2017): 121152. | ||
</div> | </div> | ||
<div style='padding-top: 15px;'></div> | <div style='padding-top: 15px;'></div> | ||
− | <div style = 'padding-right: | + | <div style = 'padding-right: 14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' > |
[6] Swaminathan, Anandh, and Richard M. Murray. "Identification of Markov Chains From Distributional Measurements and Applications to Systems Biology." IFAC Proceedings Volumes 47.3 (2014): 4400-4405. | [6] Swaminathan, Anandh, and Richard M. Murray. "Identification of Markov Chains From Distributional Measurements and Applications to Systems Biology." IFAC Proceedings Volumes 47.3 (2014): 4400-4405. | ||
</div> | </div> | ||
<div style='padding-top: 15px;'></div> | <div style='padding-top: 15px;'></div> | ||
− | <div style = 'padding-right: | + | <div style = 'padding-right:14%; padding-left: 14%; text-indent: 0px;line-height: 25px;' > |
[7] Gur E, Sauer RT. Evolution of the ssrA degradation tag in Mycoplasma: specificity switch to a different protease. Proceedings of the Natural Academy of Sciences. 2008 Oct 21; 105(42): 16113-8. | [7] Gur E, Sauer RT. Evolution of the ssrA degradation tag in Mycoplasma: specificity switch to a different protease. Proceedings of the Natural Academy of Sciences. 2008 Oct 21; 105(42): 16113-8. | ||
</div> | </div> |
Latest revision as of 03:44, 2 November 2017
Parameter
Units
MCMC estimate
Beta_R
nM/min
5.22
Alpha_R
1/min
3.21
Beta_L
nM/min
0.27
Alpha_L
1/min
0.32
Gamma_dilution
1/min
0.03
Gamma_RNA
1/min
0.03
K_max
1/(nM*min)
2.3e-05
K_min
1/(nM*min)
3.9e-03