(12 intermediate revisions by 2 users not shown) | |||
Line 17: | Line 17: | ||
<p></p> | <p></p> | ||
<h4>Approach:</h4> | <h4>Approach:</h4> | ||
− | <p>Extract and provide | + | <p>Extract and provide Sec-dependent signal peptides from <i>Bacillus subtilis</i> in a BioBrick-compatible, modified RFC25 standard.</p> |
<p></p> | <p></p> | ||
<h4>Achievements:</h4> | <h4>Achievements:</h4> | ||
Line 56: | Line 56: | ||
<p><i>Bacillus subtilis</i> contains approximately 170 Sec Signal Peptides (SPs) that re-direct proteins for secretion via the Sec pathway. For our toolbox we were able to clone 74 Sec SPs (Table 1). Each SP was amplified from genomic DNA of <i>B. subtilis</i> wild type with the primers found in the primer collection table at the end of the Design section. After amplification, each SP was digested using the restriction enzymes EcoRI and PstI, stored into the pSB1C3 backbone and submitted to the partsregistry. | <p><i>Bacillus subtilis</i> contains approximately 170 Sec Signal Peptides (SPs) that re-direct proteins for secretion via the Sec pathway. For our toolbox we were able to clone 74 Sec SPs (Table 1). Each SP was amplified from genomic DNA of <i>B. subtilis</i> wild type with the primers found in the primer collection table at the end of the Design section. After amplification, each SP was digested using the restriction enzymes EcoRI and PstI, stored into the pSB1C3 backbone and submitted to the partsregistry. | ||
</p> | </p> | ||
− | <figure class="tablefigure | + | <figure class="tablefigure" style="width: 100%;" id="BioBricks"> |
<figcaption><b>Table 1: Submitted Sec SPs of <i><b>B. subtilis</b></i>. | <figcaption><b>Table 1: Submitted Sec SPs of <i><b>B. subtilis</b></i>. | ||
</b></figcaption> | </b></figcaption> | ||
− | < | + | <table style="width: 100%;"> |
− | + | ||
− | + | ||
<tr> | <tr> | ||
<td style="padding: 5px; width:10%; border: 1px solid;"><a target="_blank" href="http://parts.igem.org/Part:BBa_K2273023">AmyE</a></td> | <td style="padding: 5px; width:10%; border: 1px solid;"><a target="_blank" href="http://parts.igem.org/Part:BBa_K2273023">AmyE</a></td> | ||
Line 158: | Line 156: | ||
<td style="padding: 5px; border: 1px solid;"></td> | <td style="padding: 5px; border: 1px solid;"></td> | ||
</tr> | </tr> | ||
− | |||
</table> | </table> | ||
− | |||
</figure> | </figure> | ||
<p>This powerful collection of SPs can now be combined with our <a href="https://2017.igem.org/Team:TU_Dresden/Composite_Part">Evaluation Vector</a> and any protein of interest (POI) for a shotgun cloning approach to identify the best combination of SP and POI. | <p>This powerful collection of SPs can now be combined with our <a href="https://2017.igem.org/Team:TU_Dresden/Composite_Part">Evaluation Vector</a> and any protein of interest (POI) for a shotgun cloning approach to identify the best combination of SP and POI. | ||
Line 341: | Line 337: | ||
<p>Following the evaluation of the multi-template PCR amplification of the SPs, we established a Standard Operating Procedure (SOP) protocol for cloning the SPs using the Signal Peptide-Evaluation Vector (SP-EV). This SOP describes the high-throughput approach of screening SPs with a POI. While our project is based in <i>B. subtilis</i> and we use <i>E. coli</i> as cloning host, we believe this SOP can be applied to any organism which is able to perform secretion via the Sec pathway.</p> | <p>Following the evaluation of the multi-template PCR amplification of the SPs, we established a Standard Operating Procedure (SOP) protocol for cloning the SPs using the Signal Peptide-Evaluation Vector (SP-EV). This SOP describes the high-throughput approach of screening SPs with a POI. While our project is based in <i>B. subtilis</i> and we use <i>E. coli</i> as cloning host, we believe this SOP can be applied to any organism which is able to perform secretion via the Sec pathway.</p> | ||
<figure> | <figure> | ||
− | <figure class="makeresponsive floatleft" style="width:60%; margin-bottom:- | + | <figure class="makeresponsive floatleft" style="width:60%; margin-bottom:-10px;"> |
<img class="zoom" src="https://static.igem.org/mediawiki/2017/7/70/SHATTERtheUniverse.gif"><figcaption><b>Figure 4: Animated cloning stages using our EV.</b> The promoter can be exchanged via EcoRI and BsaI (=results in XbaI overhang), to insert Signal Peptides use XbaI and AgeI and use NgoMIV and PstI to exchange of the gene of interest.</figcaption></figure> | <img class="zoom" src="https://static.igem.org/mediawiki/2017/7/70/SHATTERtheUniverse.gif"><figcaption><b>Figure 4: Animated cloning stages using our EV.</b> The promoter can be exchanged via EcoRI and BsaI (=results in XbaI overhang), to insert Signal Peptides use XbaI and AgeI and use NgoMIV and PstI to exchange of the gene of interest.</figcaption></figure> | ||
<p>We provide the EV with a xylose inducible promoter (P<sub><i>xylA</i></sub>), which is well characterised for the use in <i>B. subtilis</i>. All the following experiments were performed using this promoter to drive our expression. As a first approach, we wanted to investigate if we could boost the secretion of the native <i>amyE</i> in <i>B. subtilis</i>. We amplified <i>amyE</i> (without its native signal peptide) using the primers iG17P180 and iG17P062, restriction enzymes interfering with the RFC25 standard were removed via mutagenesis PCR using iG17P057 - iG17P062. After sequencing, we stored the biobricked RFC25 compatible <i>amyE</i> version in the pSB1C3 backbone and submitted it to the parts registry (<a target="_blank" href="http://parts.igem.org/Part:BBa_K2273103">BBa_K2273103</a>). We then sub-cloned this part into our EV, via NgoMIV and PstI, replacing the <i>lacZα</i>. Next, we amplified all SPs from each SPM subset using the RFC10 (pre- and suffix) sequences as primers (TM4487 and iG17P039). After the amplification, each subset was digested using XbaI and AgeI. Now, we had everything ready to perform our shotgun ligation approach: we digested the EV (containing the BioBrick <i>amyE</i>) with BsaI and AgeI and ligated equal molar amounts with each SPM subset (a, b, c and d). The ligation mixes were directly <a href="https://2017.igem.org/Team:TU_Dresden/Experiments">transformed into <i>B. subtilis</i></a>. | <p>We provide the EV with a xylose inducible promoter (P<sub><i>xylA</i></sub>), which is well characterised for the use in <i>B. subtilis</i>. All the following experiments were performed using this promoter to drive our expression. As a first approach, we wanted to investigate if we could boost the secretion of the native <i>amyE</i> in <i>B. subtilis</i>. We amplified <i>amyE</i> (without its native signal peptide) using the primers iG17P180 and iG17P062, restriction enzymes interfering with the RFC25 standard were removed via mutagenesis PCR using iG17P057 - iG17P062. After sequencing, we stored the biobricked RFC25 compatible <i>amyE</i> version in the pSB1C3 backbone and submitted it to the parts registry (<a target="_blank" href="http://parts.igem.org/Part:BBa_K2273103">BBa_K2273103</a>). We then sub-cloned this part into our EV, via NgoMIV and PstI, replacing the <i>lacZα</i>. Next, we amplified all SPs from each SPM subset using the RFC10 (pre- and suffix) sequences as primers (TM4487 and iG17P039). After the amplification, each subset was digested using XbaI and AgeI. Now, we had everything ready to perform our shotgun ligation approach: we digested the EV (containing the BioBrick <i>amyE</i>) with BsaI and AgeI and ligated equal molar amounts with each SPM subset (a, b, c and d). The ligation mixes were directly <a href="https://2017.igem.org/Team:TU_Dresden/Experiments">transformed into <i>B. subtilis</i></a>. | ||
Line 357: | Line 353: | ||
<img class="zoom" src="https://static.igem.org/mediawiki/2017/b/ba/PlatesofDOOM.png"><figcaption><b>Figure 5: Handling of <i><b>B. subtilis</b></i> after transformation shown on agar plates.</b> <b>A</b> The transformation agar plate (chloramphenicol and X-Gal). No blue colonies indicate a high transformation efficiency. <b>B</b> The screening agar plate. Zones of degradation indicate successful integration events. The negative control (TMB3547) has been marked with a black box, the positive control (W168 wild type) with a white box respectively. <b>C</b> The backup agar plate containing chloramphenicol. Neither the negative control (black box), nor the positive control (white box).</figcaption></figure> | <img class="zoom" src="https://static.igem.org/mediawiki/2017/b/ba/PlatesofDOOM.png"><figcaption><b>Figure 5: Handling of <i><b>B. subtilis</b></i> after transformation shown on agar plates.</b> <b>A</b> The transformation agar plate (chloramphenicol and X-Gal). No blue colonies indicate a high transformation efficiency. <b>B</b> The screening agar plate. Zones of degradation indicate successful integration events. The negative control (TMB3547) has been marked with a black box, the positive control (W168 wild type) with a white box respectively. <b>C</b> The backup agar plate containing chloramphenicol. Neither the negative control (black box), nor the positive control (white box).</figcaption></figure> | ||
<p>To verify positive integration of our EV-SPM-<i>amyE</i> constructs, we poured <a href="https://2017.igem.org/Team:TU_Dresden/Experiments">Lugol’s Iodine solution</a> on the screening plates, which where spiked with starch. Normally, the integration of the EV into the <i>amyE</i> locus of <i>B. subtilis</i>, results in a disruption of the native gene leading to a loss of the enzymatic activity. Therefore, successfully transformed clones would not be able to degrade starch visualisable by no brightened zone of degradation (Figure 5, B black box). But as we performed our transformation into a starch degradation-deficient <i>B. subtilis</i> strain and used amylase as POI, successfully transformed colonies were again able to degrade starch. Thereby, a brightened zone of degradation on the screening agar plate indicated promising colonies (Figure 5, B e.g. top row). The position of successfully transformed colonies was then marked on the backup agar plates (Figure 5, C). Surprisingly, some chloramphenicol resistance clones did not show any zone of starch degradation (compare clone 4 on Figure 5, C and check with the same position on Figure 5, B). We believe that in these cases, only single homologous recombination events occurred.</p> | <p>To verify positive integration of our EV-SPM-<i>amyE</i> constructs, we poured <a href="https://2017.igem.org/Team:TU_Dresden/Experiments">Lugol’s Iodine solution</a> on the screening plates, which where spiked with starch. Normally, the integration of the EV into the <i>amyE</i> locus of <i>B. subtilis</i>, results in a disruption of the native gene leading to a loss of the enzymatic activity. Therefore, successfully transformed clones would not be able to degrade starch visualisable by no brightened zone of degradation (Figure 5, B black box). But as we performed our transformation into a starch degradation-deficient <i>B. subtilis</i> strain and used amylase as POI, successfully transformed colonies were again able to degrade starch. Thereby, a brightened zone of degradation on the screening agar plate indicated promising colonies (Figure 5, B e.g. top row). The position of successfully transformed colonies was then marked on the backup agar plates (Figure 5, C). Surprisingly, some chloramphenicol resistance clones did not show any zone of starch degradation (compare clone 4 on Figure 5, C and check with the same position on Figure 5, B). We believe that in these cases, only single homologous recombination events occurred.</p> | ||
− | <p>Having now identified clones with positive integrated EV-SPM-<i>amyE</i> constructs, we proceeded with testing their supernatants in an amylase enzyme assay. <a target="_blank" href="https://www.ncbi.nlm.nih.gov/pubmed/16500607">[8]</a> We therefore, incubated approximately 30 clones of each transformation (with the four different SPM subset) in a 96 well plate using <a | + | <p>Having now identified clones with positive integrated EV-SPM-<i>amyE</i> constructs, we proceeded with testing their supernatants in an amylase enzyme assay. <a target="_blank" href="https://www.ncbi.nlm.nih.gov/pubmed/16500607">[8]</a> We therefore, incubated approximately 30 clones of each transformation (with the four different SPM subset) in a 96 well plate using <a href="https://2017.igem.org/Team:TU_Dresden/Experiments">2xYT medium</a>. We also included the negative control (TMB3547) and the wild type. We inoculated the 96 well plates and incubated the <i>B. subtilis</i> cultures for 8 hours at 37°C with 220 rpm using the plate reader.</p> |
</figure> | </figure> | ||
Line 383: | Line 379: | ||
<figure> | <figure> | ||
<figure class="makeresponsive floatright" style="width: 61.3%;"> | <figure class="makeresponsive floatright" style="width: 61.3%;"> | ||
− | <img class="zoom" src="https://static.igem.org/mediawiki/2017/ | + | <img class="zoom" src="https://static.igem.org/mediawiki/2017/7/77/T--TU_Dresden--P_SPT_mCherry.jpeg"> |
<figcaption><b>Figure 9: Sequenced signal peptides in front of <i><b>mCherry</b></i>.</b> Fold change in secretion efficiency (fluorescence) over wild type. Depicted candidates were identified by sequencing.</figcaption></figure> | <figcaption><b>Figure 9: Sequenced signal peptides in front of <i><b>mCherry</b></i>.</b> Fold change in secretion efficiency (fluorescence) over wild type. Depicted candidates were identified by sequencing.</figcaption></figure> | ||
<figure class="makeresponsive floatleft" style="width: 38.7%;"> | <figure class="makeresponsive floatleft" style="width: 38.7%;"> |
Latest revision as of 16:10, 13 December 2017