Line 14: | Line 14: | ||
The genetically engineered Biosensor will help to <b>(I)</b> reliably detect even minimal antibiotic concentrations of compounds from the beta-lactam family in waste and drinking water and <b>(II)</b> unravel producer strains of yet unknown Beta-lactam related antibiotics. After extensive characterization of the detection range and sensitivity, the greater goal is to combine the functional Beta-lactam biosensor with our Peptidosomes. Thereby, we would proof the applicability of EncaBcillus as a completely new cultivation platform. Encapsulation of this whole-cell biosensor, will allow an easier and safer handling of the bacteria and thus making them more appealing for field applications, like for example in sewage treatment plants. As a proof of principle we used six Beta-lactams and two controls (water and bacitracin) to evaluate our Biosensor (table 1).</p> | The genetically engineered Biosensor will help to <b>(I)</b> reliably detect even minimal antibiotic concentrations of compounds from the beta-lactam family in waste and drinking water and <b>(II)</b> unravel producer strains of yet unknown Beta-lactam related antibiotics. After extensive characterization of the detection range and sensitivity, the greater goal is to combine the functional Beta-lactam biosensor with our Peptidosomes. Thereby, we would proof the applicability of EncaBcillus as a completely new cultivation platform. Encapsulation of this whole-cell biosensor, will allow an easier and safer handling of the bacteria and thus making them more appealing for field applications, like for example in sewage treatment plants. As a proof of principle we used six Beta-lactams and two controls (water and bacitracin) to evaluate our Biosensor (table 1).</p> | ||
+ | <main> | ||
<div class="contentbox"> | <div class="contentbox"> | ||
<h1 class="box-heading">Design</h1> | <h1 class="box-heading">Design</h1> |
Revision as of 15:30, 28 October 2017