Line 13: | Line 13: | ||
<h1 class="box-heading">Background</h1> | <h1 class="box-heading">Background</h1> | ||
<p>Antibiotics represent the most effective treatment against bacterial infections. Since the discovery of penicillin by Alexander Fleming in 1928, many new antibiotics have been constantly developed and were successfully applied to treat life-threatening diseases. This significant advancement in medicine saved millions of lives and still does today. However, fighting microorganisms has never been a completed task, but rather an ongoing race between drug discovery and pathogens developing resistances. Thus, multi-drug resistant bacteria still constitute a major threat for humanity, as infectious diseases represent the second leading cause of death worldwide. <a target="_blank" href ="https://www.aerzteblatt.de/archiv/52563">[1]</a><a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422635/">[2]</a></p> | <p>Antibiotics represent the most effective treatment against bacterial infections. Since the discovery of penicillin by Alexander Fleming in 1928, many new antibiotics have been constantly developed and were successfully applied to treat life-threatening diseases. This significant advancement in medicine saved millions of lives and still does today. However, fighting microorganisms has never been a completed task, but rather an ongoing race between drug discovery and pathogens developing resistances. Thus, multi-drug resistant bacteria still constitute a major threat for humanity, as infectious diseases represent the second leading cause of death worldwide. <a target="_blank" href ="https://www.aerzteblatt.de/archiv/52563">[1]</a><a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422635/">[2]</a></p> | ||
− | <p>One major reason, for the steady increase of antimicrobial resistances is the “inappropriate use of antimicrobials”. Due to excessive prescription and application in livestock farming, little amounts of antibiotics are nearly found everywhere, even in drinking water. These low-dose and non-lethal concentrations containing habitats, allow bacteria to adjust and develop resistances. | + | <p>One major reason, for the steady increase of antimicrobial resistances is the “inappropriate use of antimicrobials”. Due to excessive prescription and application in livestock farming, little amounts of antibiotics are nearly found everywhere, even in drinking water. These low-dose and non-lethal concentrations containing habitats, allow bacteria to adjust and develop resistances.<a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422635/">[2]</a><a target="_blank" href ="http://www.who.int/mediacentre/factsheets/fs194/en/">[3]</a></p> |
− | <p>As Beta-lactams make up a large percentage of all antibiotics used, the project preferentially focused on this class of broad-spectrum antibiotics. Carbapenems, penicillin derivatives, cephalosporins and monobactams represent the four main classes of the beta-lactams that sum up to over 100 different active substances. All compounds of this particular group can be easily identified by their common chemical structure: the beta-lactam ring (see Figure1).</p> | + | <p>As Beta-lactams make up a large percentage of all antibiotics used, the project preferentially focused on this class of broad-spectrum antibiotics. Carbapenems, penicillin derivatives, cephalosporins and monobactams represent the four main classes of the beta-lactams that sum up to over 100 different active substances. All compounds of this particular group can be easily identified by their common chemical structure: the beta-lactam ring (see Figure1).<a target="_blank" href ="https://en.wikipedia.org/wiki/Β-lactam_antibiotic">[4]</a></p> |
<figure> | <figure> | ||
Line 56: | Line 56: | ||
<p>All genetic constructs and plasmids have been created using the RFC10 <a target="_blank" href ="http://parts.igem.org/Help:Standards/Assembly/RFC10">RFC10</a> and/or <a target="_blank" href ="http://parts.igem.org/Assembly_standard_25">RFC25</a> cloning standard. Enzymes used were obtained from New England BioLabs©. Cloning procedures were carried out according to the manufacturer`s protocols. </p> | <p>All genetic constructs and plasmids have been created using the RFC10 <a target="_blank" href ="http://parts.igem.org/Help:Standards/Assembly/RFC10">RFC10</a> and/or <a target="_blank" href ="http://parts.igem.org/Assembly_standard_25">RFC25</a> cloning standard. Enzymes used were obtained from New England BioLabs©. Cloning procedures were carried out according to the manufacturer`s protocols. </p> | ||
− | <p>For submission of our parts to the registry, all Biobricks were cloned into the pSB1C3 backbone. The created genetic constructs were verified by sequencing (Eurofins or GATC sequencing services). All designed plasmids were stored in <i>Escherichia coli</i> DH10β (see <a target="_blank" href ="https://2017.igem.org/Team:TU_Dresden/Experiments">Experiments and Protocols</a> for details). In this project, we used integrative single-copy B. subtilis specific vectors that stably integrate into the genome at designated loci.</a><a target="_blank" href ="https://jbioleng.biomedcentral.com/articles/10.1186/1754-1611-7-29">[ | + | <p>For submission of our parts to the registry, all Biobricks were cloned into the pSB1C3 backbone. The created genetic constructs were verified by sequencing (Eurofins or GATC sequencing services). All designed plasmids were stored in <i>Escherichia coli</i> DH10β (see <a target="_blank" href ="https://2017.igem.org/Team:TU_Dresden/Experiments">Experiments and Protocols</a> for details). In this project, we used integrative single-copy B. subtilis specific vectors that stably integrate into the genome at designated loci.</a><a target="_blank" href ="https://jbioleng.biomedcentral.com/articles/10.1186/1754-1611-7-29">[5]</a></p> |
<hr> | <hr> |
Revision as of 10:38, 29 October 2017