Difference between revisions of "Team:Paris Bettencourt/Logic Circuit"

Line 31: Line 31:
  
 
<h1>Introduction & Background </h1>
 
<h1>Introduction & Background </h1>
For our main system to form, where production of a biomaterial, only occurs when two specific lights intersect, a logic-gate needed to be developed. To create a NOR-gate at the promoter level, we aimed at creating dually repressed promoters. Most of NOR-gate promoter designs using tandem repressible promoters (<a href=#ref1>1</a>, 2, 3) have unpredictable properties and leaky expression. The main challenge to create a clean design of NOR-gate containing only one transcription starting point is the lack of standard transcriptional elements smaller than repressible promoters. Recent work on transcription elements showed that assembling insulated synthetic operator upstream and downstream of an insulated T7 promoter core allowed for a more diverse control of gene expression and a more specific response time (1).
+
<div class=text1>For our main system to form, where production of a biomaterial, only occurs when two specific lights intersect, a logic-gate needed to be developed. To create a NOR-gate at the promoter level, we aimed at creating dually repressed promoters. Most of NOR-gate promoter designs using tandem repressible promoters (<a href=#ref1>1</a>, 2, 3) have unpredictable properties and leaky expression. The main challenge to create a clean design of NOR-gate containing only one transcription starting point is the lack of standard transcriptional elements smaller than repressible promoters. Recent work on transcription elements showed that assembling insulated synthetic operator upstream and downstream of an insulated T7 promoter core allowed for a more diverse control of gene expression and a more specific response time (1).</div>
 
    
 
    
 
<div class="divseparator"></div>
 
<div class="divseparator"></div>
 
<h1>Design</h1>
 
<h1>Design</h1>
   Based on our <a href=”https://2017.igem.org/Team:Paris_Bettencourt/Model#thirdmodel”>modeling</a> results, we designed decided to work of three specific repressors due to their interesting parameter values. For each pair of repressors, four different arrangements of the operators were characterized experimental. Firstly, the impact of the way the two operators are ordered downstream of the promoter core was studied (Figure 2A). Secondly, we studied the impact of adding a second operator upstream of the promoter core on promoter activity (Figure 2B). This gave us a total of twelve promoters to test (Table 1). Different input combinations were applied to the system, i.e. repressor concentrations were varied. In order to control concentration, the repressors were put under the control of well-known inducible promoters : p<sub>lacI</sub> and p<sub>ara</sub>. Since it is difficult to track the concentration of each repressor in real time, it was approximated by the fluorescence emitted by a fluorescent protein - eyfp or ecfp - regulated by the same inducible promoters as the repressors. The output was measured by the mRFP1 fluorescence emitted. All florescences were measured using a flow cytometer.
+
   <div class=text1>Based on our <a href=”https://2017.igem.org/Team:Paris_Bettencourt/Model#thirdmodel”>modeling</a> results, we designed decided to work of three specific repressors due to their interesting parameter values. For each pair of repressors, four different arrangements of the operators were characterized experimental. Firstly, the impact of the way the two operators are ordered downstream of the promoter core was studied (Figure 2A). Secondly, we studied the impact of adding a second operator upstream of the promoter core on promoter activity (Figure 2B). This gave us a total of twelve promoters to test (Table 1). Different input combinations were applied to the system, i.e. repressor concentrations were varied. In order to control concentration, the repressors were put under the control of well-known inducible promoters : p<sub>lacI</sub> and p<sub>ara</sub>. Since it is difficult to track the concentration of each repressor in real time, it was approximated by the fluorescence emitted by a fluorescent protein - eyfp or ecfp - regulated by the same inducible promoters as the repressors. The output was measured by the mRFP1 fluorescence emitted. All florescences were measured using a flow cytometer.</div>
  
 
<div class=text2>
 
<div class=text2>

Revision as of 18:02, 30 October 2017

LOGIC CIRCUIT

Introduction & Background

For our main system to form, where production of a biomaterial, only occurs when two specific lights intersect, a logic-gate needed to be developed. To create a NOR-gate at the promoter level, we aimed at creating dually repressed promoters. Most of NOR-gate promoter designs using tandem repressible promoters (1, 2, 3) have unpredictable properties and leaky expression. The main challenge to create a clean design of NOR-gate containing only one transcription starting point is the lack of standard transcriptional elements smaller than repressible promoters. Recent work on transcription elements showed that assembling insulated synthetic operator upstream and downstream of an insulated T7 promoter core allowed for a more diverse control of gene expression and a more specific response time (1).

Design

Based on our modeling results, we designed decided to work of three specific repressors due to their interesting parameter values. For each pair of repressors, four different arrangements of the operators were characterized experimental. Firstly, the impact of the way the two operators are ordered downstream of the promoter core was studied (Figure 2A). Secondly, we studied the impact of adding a second operator upstream of the promoter core on promoter activity (Figure 2B). This gave us a total of twelve promoters to test (Table 1). Different input combinations were applied to the system, i.e. repressor concentrations were varied. In order to control concentration, the repressors were put under the control of well-known inducible promoters : placI and para. Since it is difficult to track the concentration of each repressor in real time, it was approximated by the fluorescence emitted by a fluorescent protein - eyfp or ecfp - regulated by the same inducible promoters as the repressors. The output was measured by the mRFP1 fluorescence emitted. All florescences were measured using a flow cytometer.
Figure 1: Design of the system to test dually repressible promoters. Each promoter is composed of at least two different operators (in blue) recognized by specific repressors and regulates the expression of a reporter gene (mRFP1 in red). A - Only one copy of each repressor is present downstream of the promoter core. B - A copy of one of the two different operators is present upstream of the promoter core to possibly enable a better control of gene expression.
Figure 2: Design of the repressor reporter system. A - System for PLacI. B - System for pBad.


Centre for Research and Interdisciplinarity (CRI)
Faculty of Medicine Cochin Port-Royal, South wing, 2nd floor
Paris Descartes University
24, rue du Faubourg Saint Jacques
75014 Paris, France
bettencourt.igem2017@gmail.com