Line 115: | Line 115: | ||
<p>We developed and proved the applicability of a powerful toolbox to quickly screen via a high throughput procedure for improved secretion of proteins in bacteria - the Signal Peptide Toolbox. We are very much sure that the vision to facilitate Peptidosomes as protein production platform can be achieved. The promising combination of increased protein secretion and physical separation of production host and end-product has endless possible applications.</p> | <p>We developed and proved the applicability of a powerful toolbox to quickly screen via a high throughput procedure for improved secretion of proteins in bacteria - the Signal Peptide Toolbox. We are very much sure that the vision to facilitate Peptidosomes as protein production platform can be achieved. The promising combination of increased protein secretion and physical separation of production host and end-product has endless possible applications.</p> | ||
<figure> | <figure> | ||
− | <figure class="makeresponsive floatright" style="width: 38. | + | <figure class="makeresponsive floatright" style="width: 38.5%;"> |
<img class="zoom" src="https://static.igem.org/mediawiki/2017/thumb/f/f5/T--TU_Dresden--mCherry--screening2.png/800px-T--TU_Dresden--mCherry--screening2.png"> | <img class="zoom" src="https://static.igem.org/mediawiki/2017/thumb/f/f5/T--TU_Dresden--mCherry--screening2.png/800px-T--TU_Dresden--mCherry--screening2.png"> | ||
<figcaption><b>Figure 9: Sequenced signal peptides in front of <i><b>mCherry</b></i>.</b> Fold change in secretion efficiency (fluorescence) over wild type. Depicted candidates were identified by sequencing.</figcaption></figure> | <figcaption><b>Figure 9: Sequenced signal peptides in front of <i><b>mCherry</b></i>.</b> Fold change in secretion efficiency (fluorescence) over wild type. Depicted candidates were identified by sequencing.</figcaption></figure> | ||
− | <figure class="makeresponsive floatright" style="width:36. | + | <figure class="makeresponsive floatright" style="width:36.3%;"> |
<img class="zoom" src="https://static.igem.org/mediawiki/2017/thumb/3/32/YOURWORLDSHALLSUFFER.png/800px-YOURWORLDSHALLSUFFER.png"><figcaption><b>Figure 7: Sequenced signal peptides in front of <i><b>amyE</b></i>.</b> Fold change in secretion efficiency (amylase activity) over wild type. Depicted candidates were identified by sequencing.</figcaption></figure> | <img class="zoom" src="https://static.igem.org/mediawiki/2017/thumb/3/32/YOURWORLDSHALLSUFFER.png/800px-YOURWORLDSHALLSUFFER.png"><figcaption><b>Figure 7: Sequenced signal peptides in front of <i><b>amyE</b></i>.</b> Fold change in secretion efficiency (amylase activity) over wild type. Depicted candidates were identified by sequencing.</figcaption></figure> | ||
− | <figure class="makeresponsive floatleft" style="width: | + | <figure class="makeresponsive floatleft" style="width: 24.8%;"> |
<img class="zoom" src="https://static.igem.org/mediawiki/2017/thumb/3/37/T--TU_Dresden--secretion--tabaluga.png/766px-T--TU_Dresden--secretion--tabaluga.png"> | <img class="zoom" src="https://static.igem.org/mediawiki/2017/thumb/3/37/T--TU_Dresden--secretion--tabaluga.png/766px-T--TU_Dresden--secretion--tabaluga.png"> | ||
<figcaption><b>Figure 8: Sequenced signal peptides in front of <i><b>sfGFP</b></i>.</b> Fold change in secretion efficiency (fluorescence) over wild type. Depicted candidates were identified by sequencing.</figcaption> | <figcaption><b>Figure 8: Sequenced signal peptides in front of <i><b>sfGFP</b></i>.</b> Fold change in secretion efficiency (fluorescence) over wild type. Depicted candidates were identified by sequencing.</figcaption> |
Revision as of 17:50, 31 October 2017