Line 12: | Line 12: | ||
<div class="contentbox"> | <div class="contentbox"> | ||
<h1 class="box-heading">Background</h1> | <h1 class="box-heading">Background</h1> | ||
− | <p>Antibiotics represent the most effective treatment against bacterial infections. Since the discovery of penicillin by Alexander Fleming in 1928, many new antibiotics have been constantly developed and were successfully applied to treat life-threatening diseases. This significant advancement in medicine saved millions of lives and still does today. However, fighting microorganisms has never been a completed task, but rather an ongoing race between drug discovery and pathogens developing resistances. Thus, multi-drug resistant bacteria still constitute a major threat for humanity, as infectious diseases represent the second leading cause of death worldwide. <a target="_blank" href ="https://www. | + | <p>Antibiotics represent the most effective treatment against bacterial infections. Since the discovery of penicillin by Alexander Fleming in 1928, many new antibiotics have been constantly developed and were successfully applied to treat life-threatening diseases. This significant advancement in medicine saved millions of lives and still does today. However, fighting microorganisms has never been a completed task, but rather an ongoing race between drug discovery and pathogens developing resistances. Thus, multi-drug resistant bacteria still constitute a major threat for humanity, as infectious diseases represent the second leading cause of death worldwide. <a target="_blank" href ="https://www.aerzteblatt.de/archiv/52563">[1]</a><a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422635/">[2]</a></p> |
− | <p>One major reason, for the steady increase of antimicrobial resistances is the “inappropriate use of antimicrobials”. Due to excessive prescription and application in livestock farming, little amounts of antibiotics are nearly found everywhere, even in drinking water. These low-dose and non-lethal concentrations containing habitats, allow bacteria to adjust and develop resistances.</p> | + | <p>One major reason, for the steady increase of antimicrobial resistances is the “inappropriate use of antimicrobials”. Due to excessive prescription and application in livestock farming, little amounts of antibiotics are nearly found everywhere, even in drinking water. These low-dose and non-lethal concentrations containing habitats, allow bacteria to adjust and develop resistances.</a><a target="_blank" href ="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4422635/">[2]</a><a target="_blank" href ="http://www.who.int/mediacentre/factsheets/fs194/en/">[3]</a></p> |
<p>As Beta-lactams make up a large percentage of all antibiotics used, the project preferentially focused on this class of broad-spectrum antibiotics. Carbapenems, penicillin derivatives, cephalosporins and monobactams represent the four main classes of the beta-lactams that sum up to over 100 different active substances. All compounds of this particular group can be easily identified by their common chemical structure: the beta-lactam ring (see Figure1).</p> | <p>As Beta-lactams make up a large percentage of all antibiotics used, the project preferentially focused on this class of broad-spectrum antibiotics. Carbapenems, penicillin derivatives, cephalosporins and monobactams represent the four main classes of the beta-lactams that sum up to over 100 different active substances. All compounds of this particular group can be easily identified by their common chemical structure: the beta-lactam ring (see Figure1).</p> | ||
Line 37: | Line 37: | ||
<img src="https://static.igem.org/mediawiki/2017/4/46/T--TU_Dresden--P_Biosensor_Figure2_mechanismbiosensor.png" | <img src="https://static.igem.org/mediawiki/2017/4/46/T--TU_Dresden--P_Biosensor_Figure2_mechanismbiosensor.png" | ||
alt="Figure 2 Molecular mechanism of the Biosensor" class="zoom"> | alt="Figure 2 Molecular mechanism of the Biosensor" class="zoom"> | ||
− | <figcaption><b>Figure 2: Overall concept showing the components and the molecular mechanism of the Biosensor in <i><b>B. subtilis</b></i></b>.Upon binding of a beta-lactam to the receptor BlaR1 <b>(1)</b>, the signal is transferred to the repressor BlaI, which | + | <figcaption><b>Figure 2: Overall concept showing the components and the molecular mechanism of the Biosensor in <i><b>B. subtilis</b></i></b>.Upon binding of a beta-lactam to the receptor BlaR1 <b>(1)</b>, the signal is transferred to the repressor BlaI, which is degraded and frees the target promoter <b>(2)</b> enabling the expression of an easy detectable reporter <b>(3)</b>.</figcaption></figure> |
<p>For the creation of our biosensor in B. subtilis, the bla-operon from S. aureus was split into three genetic constructs: <b>(A)</b> The Receptor gene blaR1 under control of a strong constitutive promotor (Pveg), <b>(B)</b> the Repressor gene blaI under control moderate strong constitutive promoter (P<sub><i>lepA</i></sub>) and <b>(C)</b> the target promoter region of the <i>bla</i>-operon (P<sub><i>blaZ</i></sub> and P<sub><i>blaR1I</i></sub>) in front of the <i>lux</i>-operon (<i>luxABCDE</i>) (see Figure 3). In addition, an inducible version of the <i>blaR1</i> construct was made by placing the P<sub><i>xylA</i></sub> promoter upstream of the <i>blaR1</i> gene <b>(A)</b>.</p> | <p>For the creation of our biosensor in B. subtilis, the bla-operon from S. aureus was split into three genetic constructs: <b>(A)</b> The Receptor gene blaR1 under control of a strong constitutive promotor (Pveg), <b>(B)</b> the Repressor gene blaI under control moderate strong constitutive promoter (P<sub><i>lepA</i></sub>) and <b>(C)</b> the target promoter region of the <i>bla</i>-operon (P<sub><i>blaZ</i></sub> and P<sub><i>blaR1I</i></sub>) in front of the <i>lux</i>-operon (<i>luxABCDE</i>) (see Figure 3). In addition, an inducible version of the <i>blaR1</i> construct was made by placing the P<sub><i>xylA</i></sub> promoter upstream of the <i>blaR1</i> gene <b>(A)</b>.</p> |
Revision as of 20:49, 28 October 2017