<div style = 'padding-right: 190px; padding-left: 190px; text-indent: 50px;line-height: 25px;' >We would also like to note that due to a judging form mishap, we did not fill in the Silver Medal parts requirement with any BioBrick IDs. However, since these parts serve as both new parts and functional proofs of concept, they would be sufficient to fulfill the Silver Medal requirement, we would humbly ask that judges evaluate these parts (among others), as proof of our fulfillment of Silver Medal requirement 1. More information on this can be found on our for Judges pages, as well as our other part related pages.</div>
+
<div style = 'padding-right: 190px; padding-left: 190px; text-indent: 50px;line-height: 25px;' >We would also like to note that due to a judging form mishap, we did not fill in the Silver Medal parts requirement with any BioBrick IDs. However, since these parts serve as both new parts and functional proofs of concept, they would be sufficient to fulfill the Silver Medal requirement, we would humbly ask that judges evaluate these parts (among others), as proof of our fulfillment of Silver Medal requirement I. More information on this can be found on our for Judges pages, as well as our other part related pages.</div>
+
<div style='background: #808080; margin: 0px 190px 20px 190px; height:1px;></div>
+
+
<div style='padding-top: 0px;'></div>
+
+
<div style = 'padding-right: 190px; padding-left: 190px; text-indent: 50px;line-height: 25px;' > Seperate out the graphs with explanations of each</div>
Revision as of 00:02, 30 October 2017
Background
This year our team has been focusing on creating a system that will allow other iGEM teams to easily control the gene expression speed of an arbitrary protein without requiring a costly wholesale redesign of existing architecture. To that end we characterized how protein degradation tags (pdt) can be used to modularly change the speed of mScarlet-I, a fast folding (7 minutes) high quantum yield red fluorescent protein. We also created a set of easy cloning parts which enable future iGEM teams to clone our parts without needing intermediates. At the UVA Mid-Atlantic meetup, we were particularly intrigued by University of Maryland iGEM’s copper sensor. After discussing with them, we agreed that we would collaborate on improving the function of their copper sensor (BBa_ BBa_K2477013). Since they primarily wanted to use their copper sensor as an educational tool, reducing the time required to get results would help them keep students engaged, as well as enable them to use their device in labs or outreach activities that did not have a lot of time.
To help them increase their gene expression speed we proposed that we jointly create and characterize modified versions of their parts with pdts. Since time was short and Maryland did not have access to a cell sorter, we simply had them ship us their parts, and then did the modifications and characterizations at William and Mary, before sending the modified parts back for use. On the other end, William and Mary sent blinded speed constructs to Maryland for testing. We hoped that this would enable us to confirm degradation in platforms other than our own, and potentially show speed change as well.
Results
We managed to clone and sequence all 6 pdt variants of University of Maryland’s copper circuit (K2333437-K2333442). We confirmed that they are inducible with copper sulfate and that the RFP produced can be degraded by mf-Lon (Figure 1). We then performed preliminary speed characterization of a subset of the parts before sending them back to Maryland (Figure 2). We also analyzed Maryland’s data and found that degradation was in fact occurring (Figure 3). Together these results show that not only can our system degrade in different strains and media conditions, but that it can degrade and change the speed of gene expression for arbitrary proteins. While we didn’t get to characterize the modified parts to the extent we wanted, we did see a noticeable and qualitatively similar speed change in our characterization. We hope that with a little more testing, we’ll be able to make these parts as consistent as our test parts.
We would also like to note that due to a judging form mishap, we did not fill in the Silver Medal parts requirement with any BioBrick IDs. However, since these parts serve as both new parts and functional proofs of concept, they would be sufficient to fulfill the Silver Medal requirement, we would humbly ask that judges evaluate these parts (among others), as proof of our fulfillment of Silver Medal requirement I. More information on this can be found on our for Judges pages, as well as our other part related pages.