Line 22: | Line 22: | ||
<figure style="width: 49%;" class="makeresponsive linkpicture"><img src="https://static.igem.org/mediawiki/2017/f/fe/T--TU_Dresden--sketch--biosensor.png"> | <figure style="width: 49%;" class="makeresponsive linkpicture"><img src="https://static.igem.org/mediawiki/2017/f/fe/T--TU_Dresden--sketch--biosensor.png"> | ||
<figcaption><h2>Biosensor</h2> | <figcaption><h2>Biosensor</h2> | ||
− | <p>Worldwide, multidrug-resistant germs are on the rise and provoke the intensive search for novel effective compounds. To simplify the search for new antibiotics and to track the antibiotic pollution in water samples | + | <p>Worldwide, multidrug-resistant germs are on the rise and provoke the intensive search for novel effective compounds. To simplify the search for new antibiotics and to track the antibiotic pollution in water samples, we developed a functional and complete heterologous β-lactam biosensor in Bacillus subtilis. By the time these specified cells sense a compound of the β-lactam family, they will respond by producing a measurable luminescence signal. Here, we analyzed the detection range and sensitivity of the biosensor in response to six different β-lactam antibiotics. The evaluated Biosensor was then encapsulated into Peptidosomes to prove the concept of our project EncaBcillus. The trapping of engineered bacteria thus will allow for increased control and simplified handling, potentially raising the chances for their application e.g. sewage treatment plants.</p></figcaption> |
</figure></a> | </figure></a> | ||
Revision as of 14:07, 1 November 2017