<p>Biosensor 2 was activated by all of the β-lactam compounds tested (Figure 4, Panel D). Ampicillin, cefoxitin, cefalexin, and cefoperazone strongly activate the system, while penicillin G and carbenicillin just show a weak induction of the signal on the plate. These findings go along with the results obtained in liquid medium in the previous experiments.
<p>Biosensor 2 was activated by all of the β-lactam compounds tested (Figure 4, Panel D). Ampicillin, cefoxitin, cefalexin, and cefoperazone strongly activate the system, while penicillin G and carbenicillin just show a weak induction of the signal on the plate. These findings go along with the results obtained in liquid medium in the previous experiments.
On the plate with the lawn of biosensor 3 (Figure 4, Panel D), all β-lactams could be detected efficiently when 0.2% xylose was added. In contrast to biosensor 1 and 2, there is a very weak luminescence halo around the cefalexin disk. Also, this halo seems not to de directly at the edge where the cells are in contact with the antibiotic, but rather a bit further off the inhibition zone. Without induction of biosensor 3 with 0.2% xylose, we could not detect any luminescence signal, demonstrating that the receptor (BlaR1) is crucial for detection and signal transduction, standing in line with results obtained in liquid medium (data not shown). The following Table 4 contains the measured diameters of all inhibitions zones caused by the antibiotic. As expected, no inhibition zones around the negative control dH<sub>2</sub>O were observed.</p>
On the plate with the lawn of biosensor 3 (Figure 4, Panel D), all β-lactams could be detected efficiently when 0.2% xylose was added. In contrast to biosensor 1 and 2, there is a very weak luminescence halo around the cefalexin disk. Also, this halo seems not to de directly at the edge where the cells are in contact with the antibiotic, but rather a bit further off the inhibition zone. Without induction of biosensor 3 with 0.2% xylose, we could not detect any luminescence signal, demonstrating that the receptor (BlaR1) is crucial for detection and signal transduction, standing in line with results obtained in liquid medium (data not shown). The following Table 4 contains the measured diameters of all inhibitions zones caused by the antibiotic. As expected, no inhibition zones around the negative control dH<sub>2</sub>O were observed.</p>
As part of the EncaBcillus project, we developed a novel and complete heterologous biosensor for β-lactam antibiotics in Bacillus subtilis. This biosensor is based on a one-component system encoded in the so-called bla-operon naturally found in Staphylococcus aureus. The biosensor is composed of three composites from this operon: The β-lactam receptor BlaR1 receptor and the repressor BlaI which have been codon-adapted for expression in B. subtilis as well as the PblaZ promoter [BBa_K2273111](see Figure 2). This promoter was inserted upstream of the lux-operon, our reporter of choice. Figure 1 displays the molecular mechanism of the established biosensor. In case a β-lactam is bound to BlaR1, the receptor`s proteolytic c-terminal domain degrades the BlaI repressor, thereby releasing the PblaZ promoter. This enables binding of the transcription machinery to the promoter and therefore the expression of the luxABCDE genes, resulting in a luminescence signal produced by the bisosensor.
This biosensor project turned out to be successful as our biosensor showed a great performance in all conducted experiments. For this reason, we created this section to apply for “best basic part” with the PblaZ promoter [BBa_K2273111]. As this promoter showed high activity and reliability when induced by β-lactams, a clear differentiation between background and the desired signal was possible. The results demonstrated in the paragraphs below, validate the functionality of the biosensor and thus also the functionality of its composites.
Proving the functionality of PblaZ
1. Assessing the activity of PblaZ in liquid medium
Summary
Taking together all the results obtained in this project, we can conclude that all three biosensors show excellent functionality under various conditions. All strains are able to detect the six β-lactams, though the biosensors 2 and 3 perform better on solid MH-medium. Generally speaking, the PblaZ promoter, as part of the biosensor strains, generates a high luminescence signal that can be easily detected in liquid and on solid media. Further, our results show high reproducibility of the strong promoter activity in the conducted experiments evaluated in the section above.
Another potential application for the PblaZ promoter other than in the context of a biosensor would be in the framework of an expression system. As already very low concentrations of e.g. cefoperazone are leading to strong activation of the promoter by the BlaR1-BlaI system, you could think of replacing the lux-operon by any gene of interest. This promoter reached even higher activities than the constitutive promoter Pveg. For this reason, we also propose this system for the overexpression of proteins of interest.