Line 45: | Line 45: | ||
{{#tag:html| | {{#tag:html| | ||
<h1>Design of evolution circuit</h1> | <h1>Design of evolution circuit</h1> | ||
− | Our evolution circuit for cytochrome engineering works as follows: Bacteriophages infect bacterial cells by introducing their genome. The genome encodes a Selection Plasmid (SP) that contains the human CYP1A2 variant and all necessary components for virus propagation except geneIII. The Accessory Plasmid (AP) codes for geneIII driven by a Psp-tet promoter and contains a riboswitch, located between the promoter and geneIII, which regulates the expression rate of geneIII. The riboswitch on the AP is only active if theophylline reaches a certain concentration within the bacterium. If CYP1A2 is active, caffeine is converted to theophylline. Gradually the theophylline concentration increases and acts upon the riboswitch, which enables expression of geneIII . Additionally, the AP encodes for the chaperone HDJ-1, which is essential to receive the functional CYP1A2 enzyme (Fig.1). | + | Our evolution circuit for cytochrome engineering works as follows: Bacteriophages infect bacterial cells by introducing their genome. The genome encodes a Selection Plasmid (SP) that contains the human CYP1A2 variant and all necessary components for virus propagation except geneIII. The Accessory Plasmid (AP) codes for geneIII driven by a Psp-tet promoter and contains a riboswitch, located between the promoter and geneIII, which regulates the expression rate of geneIII. The riboswitch on the AP is only active if theophylline reaches a certain concentration within the bacterium. If CYP1A2 is active, caffeine is converted to theophylline. Gradually the theophylline concentration increases and acts upon the riboswitch, which enables expression of geneIII. Additionally, the AP encodes for the chaperone HDJ-1, which is essential to receive the functional CYP1A2 enzyme (Fig.1). |
}}}} | }}}} | ||
Line 57: | Line 57: | ||
<h2>Testing CYP1A2`s activity</h2> | <h2>Testing CYP1A2`s activity</h2> | ||
− | Before we could start to evolve the CYP1A2 we first checked whether the enzyme can be expressed in its functional tertiary structure in our E.coli strain. CYP1A2 requires a heme group as cofactor which coordinates iron ions | + | Before we could start to evolve the CYP1A2 we first checked whether the enzyme can be expressed in its functional tertiary structure in our <i>E.coli</i> strain. CYP1A2 requires a heme group as cofactor which coordinates iron ions. A fast test using sodium dithionite can be conducted to proof whether the CYP1A2 is properly folded. Thereby sodium dithionite acts as a reducing agent and can be used to quantitatively detect iron ions in aqueous solutions. When sodium dithionite is added to the cell lysate of E.coli cells expressing CYP1A2 and the corresponding chaperone protein HDJ-1 a color change can be detected even by the eye (Fig. 4). Further OD measurements at 550 nm will show a peak, indicating the reduction of iron ions by sodium dithionite <x-ref>kan2016directed</x-ref>. <br> }} |
}} | }} | ||
Line 65: | Line 65: | ||
<h2>Optimized PREDCEL Workflow</h2> | <h2>Optimized PREDCEL Workflow</h2> | ||
− | The | + | The applied PREDCEL workflow is described in general in the <a href="https://2017.igem.org/Team:Heidelberg/Predcel">PREDCEL Protocol</a>. However, we had to conduct some adaptations for a successful PREDCEL run: Once the culture is grown to an OD600 of 0.6, the Mutagenesis Plasmid was activated by exchanging the initial medium containing glucose (repressing the MP) by medium containing arabinose. Then the culture is inoculated and incubated for three hours to propagate the phages before the supernatant containing the phages is transferred for the first time. After three rounds of passaging, the obtained phage supernatant is used to infect another <i>E.coli</i> strain, ensuring fast propagation of phages without selection pressure over night. This intermediate step prevents a phage washout and ensures a sufficient phage titer that is needed for the inoculation of the next PREDCEL culture. This procedure has to be repeated after each round until the evolution process is completed (Fig. 5). To get to know more about on how phage titers behave under different conditions, have a closer look on our <a href=https://2017.igem.org/Team:Heidelberg/Model/Phage_Titer#cyp_model>Modeled Phage Titers</a>. |
}}}} | }}}} | ||
Line 78: | Line 78: | ||
<h1>Results</h1> | <h1>Results</h1> | ||
In a first step, we wanted to validate our AP. Therefore, we added theophylline with a concentration of 100 µM to our inoculated culture and performed two rounds of PREDCEL. Afterwards, we determined the phage titers by plaque assays. Our theophylline treated culture displayed approximately two times higher phage titers than the non-treated control culture. | In a first step, we wanted to validate our AP. Therefore, we added theophylline with a concentration of 100 µM to our inoculated culture and performed two rounds of PREDCEL. Afterwards, we determined the phage titers by plaque assays. Our theophylline treated culture displayed approximately two times higher phage titers than the non-treated control culture. | ||
− | Using the same experimental conditions, but replacing the theophylline treatment by a 300 µM caffeine treatment, we verified the functionality of CYP1A2 and thus of our SP. If caffeine is added to the culture CYP1A2 catalyzes the reaction from caffeine to theophylline. The resulting increase of the theophylline concentration further activates the riboswitch on the AP and phage propagation is stimulated (Fig.6). | + | Using the same experimental conditions, but replacing the theophylline treatment by a 300 µM caffeine treatment, we verified the functionality of CYP1A2 and thus of our SP. If caffeine is added to the culture, CYP1A2 catalyzes the reaction from caffeine to theophylline. The resulting increase of the theophylline concentration further activates the riboswitch on the AP and phage propagation is stimulated (Fig.6). |
For the evolution of proteins via PREDCEL the addition of a Mutagenesis Plasmid (MP) is essential. For our cytochrome engineering approach we have chosen MP4, which induces a medium mutation rate <x-ref>badran2015development</x-ref>. After six iterations of our optimized PREDCEL workflow, we performed plaque assays and sequenced single plaques. The sequenced plaques showed five recurrent mutations demonstrating that we are able to induce mutations with our experimental setup and that we are able to evolve enzymes (Fig.7). | For the evolution of proteins via PREDCEL the addition of a Mutagenesis Plasmid (MP) is essential. For our cytochrome engineering approach we have chosen MP4, which induces a medium mutation rate <x-ref>badran2015development</x-ref>. After six iterations of our optimized PREDCEL workflow, we performed plaque assays and sequenced single plaques. The sequenced plaques showed five recurrent mutations demonstrating that we are able to induce mutations with our experimental setup and that we are able to evolve enzymes (Fig.7). | ||
}}}} | }}}} |
Revision as of 00:50, 2 November 2017
Cytochrome Engineering
Directing CYP1A2 product specificity
Introduction
Enzymes, i.e. proteins mediating specific, catalytic functions, are amongst the most powerful molecular machines invented by nature. Since decades, humans utilize naturally occurring enzymes as bio detergents (e.g. in washing powderThe engineering of novel enzymes catalyzing reactions that do not or only inefficiently occur in nature holds great promise for biotechnological production of regenerative fuel, biomaterials and novel pharmaceuticals, e.g. based on Organosilicons. However, so far, enzyme engineering has typically been a time-consuming, elaborate, expensive and inefficient process, usually requiring laborious, iterative trial-and-error optimization of engineered candidates
To accelerate the development of novel enzymes, our team harnessed the engineering strategy nature uses: Evolution.