<p>As shown in Figure 3, the wildtype W168 (black with white dots) shows no increase in RLU/OD<sub>600</sub> values when induced with the different β-lactam antibiotics and controls. Control 1 (black tight stripes) behaves similarly to the wild type strain. The slight decrease of control 2 (light grey) in the bar chart where induction with ampicillin and carbenicillin happened is mostly explained by the high growth inhibition caused by the chosen concentrations for W168 (with functional PenP). Most of the times, the constitutive expression of the <i>lux</i> operon resulted in an RLU/OD<sub>600</sub> of over 1.3 million for control 2 (see Figure 3).</p>
<p>As shown in Figure 3, the wildtype W168 (black with white dots) shows no increase in RLU/OD<sub>600</sub> values when induced with the different β-lactam antibiotics and controls. Control 1 (black tight stripes) behaves similarly to the wild type strain. The slight decrease of control 2 (light grey) in the bar chart where induction with ampicillin and carbenicillin happened is mostly explained by the high growth inhibition caused by the chosen concentrations for W168 (with functional PenP). Most of the times, the constitutive expression of the <i>lux</i> operon resulted in an RLU/OD<sub>600</sub> of over 1.3 million for control 2 (see Figure 3).</p>
<p>Biosensor 1 gives an overall good signal for all β-lactam antibiotics tested, but also shows a higher basal activity in absence of the β-lactam compounds of 40.000- 90.000 RLU/OD<sub>600</sub> (see Figure 3, bar chart with bacitracin and dH<sub>2</sub>O). Further, we could observe a difference in signal intensity dependent on the β-lactam antibiotic tested. Therefore, biosensor 1 gives the highest signal in presence of penicillin G, cefoxitin and cefoperazone with up to 2.7 million RLU/OD<sub>600</sub>. Ampicillin and penicillin G again show a weaker increase in signal produced by biosensor 1, which could be due to the same reason as for control 2 (see Figure 3).</p>
<p>Biosensor 1 gives an overall good signal for all β-lactam antibiotics tested, but also shows a higher basal activity in absence of the β-lactam compounds of 40.000- 90.000 RLU/OD<sub>600</sub> (see Figure 3, bar chart with bacitracin and dH<sub>2</sub>O). Further, we could observe a difference in signal intensity dependent on the β-lactam antibiotic tested. Therefore, biosensor 1 gives the highest signal in presence of penicillin G, cefoxitin and cefoperazone with up to 2.7 million RLU/OD<sub>600</sub>. Ampicillin and penicillin G again show a weaker increase in signal produced by biosensor 1, which could be due to the same reason as for control 2 (see Figure 3).</p>
−
<p>For biosensor 2, the detection range and sensitivity is comparable to biosensor 1, This strain strongly senses cefoxitin, ampicillin and cefoperazone reaching up to 2.4 million RLU/OD<sub>600</sub>. Even the basal activity of the P<sub><i>blaZ</i></sub> promoter in biosensor 2, as shown in the bar charts with bacitracin and dH<sub>2</sub>O, conforms with the one from biosensor 1.</p>
+
<p>For biosensor 2, the detection range and sensitivity is comparable to biosensor 1. This strain strongly senses cefoxitin, ampicillin and cefoperazone reaching up to 2.4 million RLU/OD<sub>600</sub>. Even the basal activity of the P<sub><i>blaZ</i></sub> promoter in biosensor 2, as shown in the bar charts with bacitracin and dH<sub>2</sub>O, conforms with the one from biosensor 1.</p>
</figure>
</figure>
<hr>
<hr>
Revision as of 02:27, 2 November 2017
Our best basic part
Introduction
As part of the EncaBcillus project, we developed a novel and complete heterologous biosensor for β-lactam antibiotics in Bacillus subtilis. This biosensor is based on a one-component system encoded in the so-called bla-operon naturally found in Staphylococcus aureus. The biosensor is composed of three composites from this operon: The β-lactam receptor BlaR1 receptor and the repressor BlaI which have been codon-adapted for expression in B. subtilis as well as the PblaZ promoter [BBa_K2273111](see Figure 2). This promoter was inserted upstream of the lux-operon, our reporter of choice. Figure 1 displays the molecular mechanism of the established biosensor. In case a β-lactam is bound to BlaR1, the receptor`s proteolytic c-terminal domain degrades the BlaI repressor, thereby releasing the PblaZ promoter. This enables binding of the transcription machinery to the promoter and therefore the expression of the luxABCDE genes, resulting in a luminescence signal produced by the bisosensor.
This biosensor project turned out to be successful as our biosensor showed a great performance in all conducted experiments. For this reason, we created this section to apply for “best basic part” with the PblaZ promoter [BBa_K2273111]. As this promoter showed high activity and reliability when induced by β-lactams, a clear differentiation between background and the desired signal was possible. The results demonstrated in the paragraphs below, validate the functionality of the biosensor and thus also the functionality of its composites.
Proving the functionality of PblaZ
1. Assessing the activity of PblaZ in liquid medium
Summary
Taking together all the results obtained in this project, we can conclude that all three biosensors show excellent functionality under various conditions. All strains are able to detect the six β-lactams, though the biosensors 2 and 3 perform better on solid MH-medium. Generally speaking, the PblaZ promoter, as part of the biosensor strains, generates a high luminescence signal that can be easily detected in liquid and on solid media. Further, our results show high reproducibility of the strong promoter activity in the conducted experiments evaluated in the section above.
Another potential application for the PblaZ promoter other than in the context of a biosensor would be in the framework of an expression system. As already very low concentrations of e.g. cefoperazone are leading to strong activation of the promoter by the BlaR1-BlaI system, you could think of replacing the lux-operon by any gene of interest. This promoter reached even higher activities than the constitutive promoter Pveg. For this reason, we also propose this system for the overexpression of proteins of interest.