Peptidosomes
Short description
Achievements
Stability and Diffusion
Figure 1, Figure 2Encapsulation of bacteria
Figure 3, Figure 4Surface decoration
Figure 5, Video magneticBeta-Lactam Biosensor
Short description
Worldwide, multidrug-resistant bacteria are on the rise and provoke the intensive search for novel effective compounds. To simplify the search for new antibiotics and to track the antibiotic pollution in water samples, whole-cell biosensors constitute a helpful investigative tool. In this part of EncaBcillus, we developed a functional and independent heterologous Beta-lactam biosensor in Bacillus subtilis. These specialised cells are capable of sensing a compound of the beta-lactam family and will respond by the production of an easily measurable luminescence signal. We analysed the detection range and sensitivity of the biosensor in response to six different Beta-lactam antibiotics from various subclasses. The evaluated biosensor was then encapsulated into Peptidosomes to proof the concept of our project EncaBcillus. The encapsulation of engineered bacteria allows an simplified handling and increased biosafety, potentially raising the chances for their application in e.g. sewage treatment plants.
Achievements
Signal Peptide Toolbox
Short description
In bacteria, protein secretion is mainly orchestrated by the Sec Pathway via Signal Peptides (SP), which are located at the N-terminus of secreted proteins. The secretion efficiency is not determined by the sequence of the SP alone, but instead is the combined result of an SP with its specific target protein. This necessitates establishing efficient screening procedures to evaluate all possible SP/target protein combinations. We developed such an approach for our Signal Peptide Toolbox, which contains 74 Sec-dependent SPs. It combines combinatorial construction with highly reproducible, quantitative measurements. By applying this procedure, we demonstrate the secretion of three different proteins and succeeded in identifying the most potent SP-protein combination for each of them. This thoroughly evaluated measurement tool, in combination with our SP toolbox (fully available via the partsregistry) enables an organism-independent, straightforward approach to identifying the best combination of SP with any protein of interest.
Achievements
Evaluation Vector
Short description
Peptidosomes in combination with Bacillus subtilis offer a perfect platform for enhanced protein overproduction by the means of efficient protein secretion provided through B. subtilis and the easy purification due to the physical separation of bacteria and the end-product in the supernatant facilitated by the Peptidosomes. Naturally, B. subtilis is a strong secretion host and in order to take full advantage of this great potential it is necessary to evaluate all possible combinations of the B. subtilis’ secretion signal peptides and the proteins of interest. Therefore, we developed the Evaluation Vector (EV) which is a powerful genetic tool containing a multiple cloning site (MCS) specifically designed to easily exchange translational fusions composed of the desired protein and a secretion signal peptide.
Achievements
Secretion
Short description
In combing Bacillus subtilis powerful secretion capacity with Peptidosomes as a new platform for functional co-cultivation we aim to produce multi protein complexes. Various strains - each secreting distinct proteins of interest - can be cultivated in one reaction hub while being physically separated. In this part of EncaBcillus we study extracelluar protein interaction mediated by the SpyTag/SpyCatcher system. This set-up bears the potential for an effective production of customizable biomaterials or enzyme complexes.
Achievements
We were able to engineer B. subtilis to secret large quantities of mCherry constructs, c-terminally fused with a mini. SpyCatcher or SpyTag (Tags). In Figure 1 we assayed the fluorescence in the supernatant, that surpasses the wilde type by far. The typical red color of mCherry is even visible in the supernatant under day light conditions (Figure 2).
We demonstrated the functionality of our SpyTag/SpyCatcher system via SDS-PAGE (Figure 3). Upon 4 h of incubating the supernatants containing mCherry with either SpyTag or mini. SpyCatcher, we were able to detect the conjugated fusion protein. Thus, we provide evidence for the applicability of co-culturing approaches using Peptidosomes, to produce self conjugation protein complexes.
Communication
Short description
By using Peptidosomes we introduce a new powerful platform for co-culturing. This technique physically separates bacterial populations without limiting their ability to communicate with each other via signalling molecules. This part of EncaBcillus is focused on proofing the concept of communication between encapsulated bacteria by making use of the native regulatory system for competence development in Bacillus subtilis which is based on quorum sensing mediated by the ComX pheromone.