Translations
Breaking the Barrier of languages
DESCRIPCIÓN DEL PROYECTO
Hace unos cuatro mil millones de años, nuestro planeta estaba en un punto de inflexión histórico. Mientras que la química orgánica ya había sido inventada, la generación reciente de moléculas orgánicas era profundamente diferente. Se organizaron en estructuras espacialmente confinadas y se auto-replicaron a una velocidad cada vez mayor. Pronto, los bloques de construcción orgánicos disponibles libremente se limitaron, y las estructuras cada vez más complejas empezaron a competir activamente por los recursos y el espacio. La vida surgió, y con ella, la evolución darwiniana. El concepto de vida resultó ser inmensamente poderoso y rápidamente transformó nuestro planeta en lo que ET podría describir fácilmente como un enorme biorreactor. Innumerables rondas de mutación y selección durante miles de millones de años dieron origen a la hermosa diversidad biológica y la complejidad que podemos apreciar hoy en día. La vida parece adaptarse perfectamente incluso a los entornos más duros y hostiles mediante la búsqueda de soluciones inteligentes, siempre y cuando tenga tiempo suficiente para hacerlo. Y aquí es donde empieza nuestro proyecto. Este año, el equipo iGEM Heidelberg tiene como objetivo aprovechar el enorme poder de la evolución darwiniana para facilitar el desarrollo de biomoléculas para el beneficio humano. Para ello, nos basaremos en el método PACE (evolución continua fago-asistida), que miniaturiza y acelera la evolución, y la dirige hacia un propósito predefinido. PACE acopla la supervivencia de los fagos rápidamente mutantes que llevan una proteína de andamio a la selección dirigida dentro de los huéspedes de E. coli. De este modo, las proteínas con las propiedades deseadas se pueden desarrollar en cuestión de horas en lugar de siglos. Para aprovechar su enorme potencial, crearemos una caja de herramientas completa y estandarizada, y un software de acompañamiento que permitirá la aplicación de PACE en diversos tipos de proteínas, incluyendo enzimas para la producción farmacéutica y de biomateriales.
DESCRIPCIÓN DEL PROYECTO
Hace unos cuatro mil millones de años, nuestro planeta estaba en un punto de inflexión histórico. Mientras que la química orgánica ya había sido inventada, la generación reciente de moléculas orgánicas era profundamente diferente. Se organizaron en estructuras espacialmente confinadas y se auto-replicaron a una velocidad cada vez mayor. Pronto, los bloques de construcción orgánicos disponibles libremente se limitaron, y las estructuras cada vez más complejas empezaron a competir activamente por los recursos y el espacio. La vida surgió, y con ella, la evolución darwiniana. El concepto de vida resultó ser inmensamente poderoso y rápidamente transformó nuestro planeta en lo que ET podría describir fácilmente como un enorme biorreactor. Innumerables rondas de mutación y selección durante miles de millones de años dieron origen a la hermosa diversidad biológica y la complejidad que podemos apreciar hoy en día. La vida parece adaptarse perfectamente incluso a los entornos más duros y hostiles mediante la búsqueda de soluciones inteligentes, siempre y cuando tenga tiempo suficiente para hacerlo. Y aquí es donde empieza nuestro proyecto. Este año, el equipo iGEM Heidelberg tiene como objetivo aprovechar el enorme poder de la evolución darwiniana para facilitar el desarrollo de biomoléculas para el beneficio humano. Para ello, nos basaremos en el método PACE (evolución continua fago-asistida), que miniaturiza y acelera la evolución, y la dirige hacia un propósito predefinido. PACE acopla la supervivencia de los fagos rápidamente mutantes que llevan una proteína de andamio a la selección dirigida dentro de los huéspedes de E. coli. De este modo, las proteínas con las propiedades deseadas se pueden desarrollar en cuestión de horas en lugar de siglos. Para aprovechar su enorme potencial, crearemos una caja de herramientas completa y estandarizada, y un software de acompañamiento que permitirá la aplicación de PACE en diversos tipos de proteínas, incluyendo enzimas para la producción farmacéutica y de biomateriales.
DESCRIPCIÓN DEL PROYECTO
Hace unos cuatro mil millones de años, nuestro planeta estaba en un punto de inflexión histórico. Mientras que la química orgánica ya había sido inventada, la generación reciente de moléculas orgánicas era profundamente diferente. Se organizaron en estructuras espacialmente confinadas y se auto-replicaron a una velocidad cada vez mayor. Pronto, los bloques de construcción orgánicos disponibles libremente se limitaron, y las estructuras cada vez más complejas empezaron a competir activamente por los recursos y el espacio. La vida surgió, y con ella, la evolución darwiniana. El concepto de vida resultó ser inmensamente poderoso y rápidamente transformó nuestro planeta en lo que ET podría describir fácilmente como un enorme biorreactor. Innumerables rondas de mutación y selección durante miles de millones de años dieron origen a la hermosa diversidad biológica y la complejidad que podemos apreciar hoy en día. La vida parece adaptarse perfectamente incluso a los entornos más duros y hostiles mediante la búsqueda de soluciones inteligentes, siempre y cuando tenga tiempo suficiente para hacerlo. Y aquí es donde empieza nuestro proyecto. Este año, el equipo iGEM Heidelberg tiene como objetivo aprovechar el enorme poder de la evolución darwiniana para facilitar el desarrollo de biomoléculas para el beneficio humano. Para ello, nos basaremos en el método PACE (evolución continua fago-asistida), que miniaturiza y acelera la evolución, y la dirige hacia un propósito predefinido. PACE acopla la supervivencia de los fagos rápidamente mutantes que llevan una proteína de andamio a la selección dirigida dentro de los huéspedes de E. coli. De este modo, las proteínas con las propiedades deseadas se pueden desarrollar en cuestión de horas en lugar de siglos. Para aprovechar su enorme potencial, crearemos una caja de herramientas completa y estandarizada, y un software de acompañamiento que permitirá la aplicación de PACE en diversos tipos de proteínas, incluyendo enzimas para la producción farmacéutica y de biomateriales.
DESCRIPCIÓN DEL PROYECTO
Hace unos cuatro mil millones de años, nuestro planeta estaba en un punto de inflexión histórico. Mientras que la química orgánica ya había sido inventada, la generación reciente de moléculas orgánicas era profundamente diferente. Se organizaron en estructuras espacialmente confinadas y se auto-replicaron a una velocidad cada vez mayor. Pronto, los bloques de construcción orgánicos disponibles libremente se limitaron, y las estructuras cada vez más complejas empezaron a competir activamente por los recursos y el espacio. La vida surgió, y con ella, la evolución darwiniana. El concepto de vida resultó ser inmensamente poderoso y rápidamente transformó nuestro planeta en lo que ET podría describir fácilmente como un enorme biorreactor. Innumerables rondas de mutación y selección durante miles de millones de años dieron origen a la hermosa diversidad biológica y la complejidad que podemos apreciar hoy en día. La vida parece adaptarse perfectamente incluso a los entornos más duros y hostiles mediante la búsqueda de soluciones inteligentes, siempre y cuando tenga tiempo suficiente para hacerlo. Y aquí es donde empieza nuestro proyecto. Este año, el equipo iGEM Heidelberg tiene como objetivo aprovechar el enorme poder de la evolución darwiniana para facilitar el desarrollo de biomoléculas para el beneficio humano. Para ello, nos basaremos en el método PACE (evolución continua fago-asistida), que miniaturiza y acelera la evolución, y la dirige hacia un propósito predefinido. PACE acopla la supervivencia de los fagos rápidamente mutantes que llevan una proteína de andamio a la selección dirigida dentro de los huéspedes de E. coli. De este modo, las proteínas con las propiedades deseadas se pueden desarrollar en cuestión de horas en lugar de siglos. Para aprovechar su enorme potencial, crearemos una caja de herramientas completa y estandarizada, y un software de acompañamiento que permitirá la aplicación de PACE en diversos tipos de proteínas, incluyendo enzimas para la producción farmacéutica y de biomateriales.
PROJECT BESCHRIJVING
Ongeveer vier miljard jaar geleden was onze planeet op een historisch keerpunt. Hoewel organische chemie reeds uitgevonden was, was de recente generatie van organische moleculen fundamenteel anders. Ze organiseerden zich in ruimtelijk beperkte structuren en zelf-repliceerden aan een steeds toenemende snelheid. Al snel werden de vrij beschikbare organische bouwstenen gering en de steeds complexere structuren begonnen actief met elkaar te concurreren voor bronnen en plaats. Leven ontstond en daarmee ook de Darwiniaanse evolutie. Het concept van leven bleek krachtig te zijn en transformeerde onze planeet snel in wat ET gemakkelijk zou kunnen beschrijven als een enorme bioreactor. Talloze rondes van mutatie en selectie over miljarden jaren hebben geleid tot de prachtige biologische diversiteit en complexiteit die wij vandaag kunnen bewonderen. Leven lijkt probleemloos te kunnen aanpassen aan zelfs de meest onvriendelijke en barre omstandigheden door slimme oplossingen te vinden, toch indien het genoeg tijd heeft om dit te doen. Dit is waar ons project begint. Dit jaar streeft het iGEM team van Heidelberg ernaar de enorme kracht van Darwiniaanse evolutie te benutten om de ontwikkeling van biomoleculen te vergemakkelijken ten voordele van de mens. Hiervoor zullen we bouwen op de PACE (phage-assisted continuous evolution) methode die evolutie mianturiseert en versnelt en het leidt naar een vooropgesteld doel. PACE koppelt de overleving van snel muterende fagen die een scaffold eiwit dragen aan gerichte selectie onder E. coli gastheren. Hierdoor kunnen proteïnen met gewenste eigenschappen ontwikkeld worden in uren in plaats van in eeuwen. Om het enorme potentieel te benutten, willen we een uitgebreide en gestandaardiseerde toolbox ontwikkelen met bijhorende software die het mogelijk maakt PACE te gebruiken voor diverse klassen van proteïnen, waaronder enzymen voor farmaceutische en biomateriaal productie.
DESCRIPCIÓN DEL PROYECTO
Hace unos cuatro mil millones de años, nuestro planeta estaba en un punto de inflexión histórico. Mientras que la química orgánica ya había sido inventada, la generación reciente de moléculas orgánicas era profundamente diferente. Se organizaron en estructuras espacialmente confinadas y se auto-replicaron a una velocidad cada vez mayor. Pronto, los bloques de construcción orgánicos disponibles libremente se limitaron, y las estructuras cada vez más complejas empezaron a competir activamente por los recursos y el espacio. La vida surgió, y con ella, la evolución darwiniana. El concepto de vida resultó ser inmensamente poderoso y rápidamente transformó nuestro planeta en lo que ET podría describir fácilmente como un enorme biorreactor. Innumerables rondas de mutación y selección durante miles de millones de años dieron origen a la hermosa diversidad biológica y la complejidad que podemos apreciar hoy en día. La vida parece adaptarse perfectamente incluso a los entornos más duros y hostiles mediante la búsqueda de soluciones inteligentes, siempre y cuando tenga tiempo suficiente para hacerlo. Y aquí es donde empieza nuestro proyecto. Este año, el equipo iGEM Heidelberg tiene como objetivo aprovechar el enorme poder de la evolución darwiniana para facilitar el desarrollo de biomoléculas para el beneficio humano. Para ello, nos basaremos en el método PACE (evolución continua fago-asistida), que miniaturiza y acelera la evolución, y la dirige hacia un propósito predefinido. PACE acopla la supervivencia de los fagos rápidamente mutantes que llevan una proteína de andamio a la selección dirigida dentro de los huéspedes de E. coli. De este modo, las proteínas con las propiedades deseadas se pueden desarrollar en cuestión de horas en lugar de siglos. Para aprovechar su enorme potencial, crearemos una caja de herramientas completa y estandarizada, y un software de acompañamiento que permitirá la aplicación de PACE en diversos tipos de proteínas, incluyendo enzimas para la producción farmacéutica y de biomateriales.