Difference between revisions of "Team:Heidelberg/Toolbox test"

(Created page with "{{Heidelberg/header}} {{Heidelberg/navbar}} <html> <style> .getPlasmidB...")
 
Line 588: Line 588:
 
                                             4. Induce mutagenesis</h1>
 
                                             4. Induce mutagenesis</h1>
 
                                         </div>
 
                                         </div>
 +
 +
 +
 +
 +
 
                                       <div class="t-container input-form content"  style="position: relative; top: 100px;">
 
                                       <div class="t-container input-form content"  style="position: relative; top: 100px;">
 
                                             <h1 style="text-align: center !important; color:##393939 !important; font-weight: 400 !important;padding: 0px !important; margin: 0px !important">
 
                                             <h1 style="text-align: center !important; color:##393939 !important; font-weight: 400 !important;padding: 0px !important; margin: 0px !important">
 
                                             5. Optimize conditions</h1>
 
                                             5. Optimize conditions</h1>
 +
<div class="content" style="padding: 10px 20px 10px 20px !important">
 
PACE and PREDCEL require well chosen conditions to yield the best results. Use our <a href="https://2017.igem.org/Team:Heidelberg/Model/Tools">Interactive Webtools</a> to calculate parameters like <a href="https://2017.igem.org/Team:Heidelberg/Model/Glucose">Glucose Concentration", <a href="<https://2017.igem.org/Team:Heidelberg/Model/Arabinose">Arabinose Concentration and <a href="https://2017.igem.org/Team:Heidelberg/Model/Medium">Medium Concumption</a> online, or obtain <a href="https://2017.igem.org/Team:Heidelberg/Model/Phage_Titer">our phage titer Model</a> and use it to reduce the risk of washout.
 
PACE and PREDCEL require well chosen conditions to yield the best results. Use our <a href="https://2017.igem.org/Team:Heidelberg/Model/Tools">Interactive Webtools</a> to calculate parameters like <a href="https://2017.igem.org/Team:Heidelberg/Model/Glucose">Glucose Concentration", <a href="<https://2017.igem.org/Team:Heidelberg/Model/Arabinose">Arabinose Concentration and <a href="https://2017.igem.org/Team:Heidelberg/Model/Medium">Medium Concumption</a> online, or obtain <a href="https://2017.igem.org/Team:Heidelberg/Model/Phage_Titer">our phage titer Model</a> and use it to reduce the risk of washout.
 +
</div>
 +
 +
 +
  
 
                                         </div>
 
                                         </div>

Revision as of 16:23, 1 November 2017

Welcome to our
Toolbox Guide!

To enable rapid design and simple cloning of APs, we created a software tool, so that cloning can easily be planned. All parts that can be chosen are available in pSB1C3 backbones from the registry. Just follow the instructions and create your own fully customized AP.

Ready to PREDCEL?

Have you already chosen a protein to be evolved?

Which approach do you pursue by using our evolutionary toolbox?

Are you sure your protein is safe to be evolved?

Do you know which equipment is required to safely work with phages?

Did you calculate all required parameters on our Integrated Modeling page?

Did you already engage with your local community to discuss your plans?

Did you consider possible consequences of your planned PREDCEL experiment?

Now it´s on you!

When you talk about PREDCEL with your colleagues, friends and local communities, you can spread the idea of making directed evolution experiments safe and to use it responsibly for addressing urgent human needs

1. Optimize parental sequence / gene pool

2. Get phage

3. Add selection pressure

1. First, choose your preferred backbone from the pull down menu. We provide three different origins of replication that differ in their copy number and therefore affect the selection stringency, your AP will have. Be aware that the origin of replication should be compatible to the origin of replication of all other plasmids you plan to use. In most of the cases it is best to combine your origin of replication with an ampicillin resistance, but we provide other antibiotic resistances for special applications as well.
2. Second, decide which RBS you need for control of geneIII translation. We offer six different RBS with different strengths. For further information look...
3. Next, decide, which reporter you would like to choose. A set of different fluorescent and luminescent reporters is available

Plasmid

Resistance & Ori

RBS + geneIII

RBS + Reporter

Activator & Promoter

4. When all standard parts are defined, the promoter and associated regulatory sequences must be set. Decide between the given options. Enter either an own sequence (as text or upload the file) or use one of the provided standard promoters that were already used by our team. Notice that the length of this part should not be below 200 bp. Ensure, that your sequence does not include a RBS.

Additional sequence

5. Finally, decide which additional gene you would like to express on your AP. Most circuits that are used in PACE, need at least one additional protein, like split-proteins, chaperone or interacting factors. Again, it is possible to enter the desired sequence or choose one of the provided genes. Make sure, you enter a whole expression cassette, with promter, RBS, CDS and terminator.
Create Plasmid

4. Induce mutagenesis

5. Optimize conditions

PACE and PREDCEL require well chosen conditions to yield the best results. Use our Interactive Webtools to calculate parameters like Glucose Concentration", Arabinose Concentration and Medium Concumption online, or obtain our phage titer Model and use it to reduce the risk of washout.