Difference between revisions of "Team:HZAU-China/Model"

Line 1: Line 1:
 
{{HZAU-China}}
 
{{HZAU-China}}
 
<html>
 
<html>
<div class="clear"></div>
 
  
<div class="column full_size">
+
<head>
<h1> Modeling</h1>
+
  <meta charset="utf-8">
 +
  <meta name="viewport" content="width=device-width, initial-scale=1">
 +
  <link rel="stylesheet" href="http://cdn.static.runoob.com/libs/bootstrap/3.3.7/css/bootstrap.min.css">
 +
  <script src="http://cdn.static.runoob.com/libs/jquery/2.1.1/jquery.min.js"></script>
 +
  <script src="http://cdn.static.runoob.com/libs/bootstrap/3.3.7/js/bootstrap.min.js"></script>
 +
  <!--公式编辑器-->
 +
  <script src="//cdn.bootcss.com/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
 +
  <script type="text/x-mathjax-config">
 +
          MathJax.Hub.Config({
 +
          extensions: ["tex2jax.js"],
 +
          jax: ["input/TeX", "output/HTML-CSS"],
 +
          tex2jax: {
 +
          inlineMath: [ ['$','$'], ["\\(","\\)"] ],
 +
          displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
 +
          processEscapes: true
 +
          },
 +
          "HTML-CSS": { availableFonts: ["TeX"] }
 +
          });
 +
          </script>
 +
  <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
 +
  </script>
 +
  <style>
 +
    /*小导航栏样式*/
  
<p>Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.</p>
+
    .container-fluid {
 +
      margin: 0;
 +
      padding: 0;
 +
      border: 0;
 +
    }
  
</div>
+
    .container-fluid {
<div class="clear"></div>
+
      margin: 0;
 +
      padding: 0;
 +
      border: 0;
 +
    }
  
<div class="column half_size">
+
    ul.nav-pills {
<h3> Gold Medal Criterion #3</h3>
+
      background: url(https://static.igem.org/mediawiki/2017/3/35/T--HZAU-China--background.png);
<p>
+
      background-size: 100% auto;
To complete for the gold medal criterion #3, please describe your work on this page and fill out the description on your <a href="https://2017.igem.org/Judging/Judging_Form">judging form</a>. To achieve this medal criterion, you must convince the judges that your team has gained insight into your project from modeling. You may not convince the judges if your model does not have an effect on your project design or implementation.  
+
      background-repeat: no-repeat;
</p>
+
      position: fixed;
 +
      display: block;
 +
      top: 50%;
 +
      margin-top: -144.5px;
 +
      margin-right: 40px;
 +
      height: 289px;
 +
      width: 200px;
 +
      overflow: hidden;
 +
    }
  
<p>
+
    ul.nav-pills>li {
Please see the <a href="https://2017.igem.org/Judging/Medals"> 2017 Medals Page</a> for more information.
+
      position: relative;
</p>
+
      top: 50%;
</div>
+
    }
  
<div class="column half_size">
+
    ul.nav-pills>li>a {
<h3>Best Model Special Prize</h3>
+
      font-size: 16px;
 +
      padding: 14px 0 14px 20px;
 +
      border-bottom-left-radius: 0px;
 +
      border-bottom-right-radius: 0px;
 +
      border-top-left-radius: 0px;
 +
      border-top-right-radius: 0px
 +
    }
  
<p>
+
    #change_top {
To compete for the <a href="https://2017.igem.org/Judging/Awards">Best Model prize</a>, please describe your work on this page  and also fill out the description on the <a href="https://2017.igem.org/Judging/Judging_Form">judging form</a>. Please note you can compete for both the gold medal criterion #3 and the best model prize with this page.
+
      margin-top: -80px;
<br><br>
+
    }
You must also delete the message box on the top of this page to be eligible for the Best Model Prize.
+
</p>
+
  
</div>
+
    /*小导航栏触碰后变色*/
<div class="clear"></div>
+
  
<div class="column full_size">
+
    .nav-pills>li>a {
<h5> Inspiration </h5>
+
      color: rgb(249, 228, 137);
<p>
+
      font-weight: 900;
Here are a few examples from previous teams:
+
    }
</p>
+
<ul>
+
<li><a href="https://2016.igem.org/Team:Manchester/Model">Manchester 2016</a></li>
+
<li><a href="https://2016.igem.org/Team:TU_Delft/Model">TU Delft 2016  </li>
+
<li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">ETH Zurich 2014</a></li>
+
<li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">Waterloo 2014</a></li>
+
</ul>
+
  
 +
    .nav-pills>li.active>a,
 +
    .nav-pills>li.active>a:focus,
 +
    .nav-pills>li.active>a:hover {
 +
      color: #000;
 +
      background-color: rgb(249, 228, 137);
 +
    }
  
</div>
+
    .nav-pills>li>a:focus,
 +
    .nav-pills>li>a:hover {
 +
      color: #000;
 +
      background-color: rgb(249, 228, 137);
 +
    }
 +
 
 +
    /*改变超链接的位置*/
 +
 
 +
    .jiaozheng {
 +
      position: relative;
 +
      top: -66px;
 +
    }
 +
  </style>
 +
  <!--内容的样式-->
 +
  <style>
 +
    /*总样式*/
 +
 
 +
    body {
 +
      font-family: "Arial", Helvetica, sans-serif;
 +
      text-align: justify;
 +
      margin: 0px;
 +
      background-color: #ffffff;
 +
    }
 +
 
 +
    /*内容框子的样式*/
 +
 
 +
    .col-sm-9 {
 +
      position: absolute;
 +
      top: 43px;
 +
      left: 50%;
 +
      margin-left: -360px;
 +
      padding: 0 30px 0 30px;
 +
      width: 960px;
 +
      height: 2300px;
 +
      z-index: -1;
 +
    }
 +
 
 +
    /*内容中几种文体的样式*/
 +
 
 +
    .col-sm-9 a:hover {
 +
      color: #000;
 +
      text-decoration: none;
 +
    }
 +
 
 +
    .biaoti {
 +
      font-size: 50px;
 +
      font-weight: bold;
 +
      text-align: center;
 +
      width: 100%;
 +
      display: block;
 +
      padding-bottom: 50px;
 +
      padding-top: 50px;
 +
      color: rgb(63, 59, 58);
 +
    }
 +
 
 +
    .zhengwen {
 +
      display: block;
 +
      font-style: arial;
 +
      font-size: 18px;
 +
      line-height: 34px;
 +
      text-align: justify;
 +
      color: #000;
 +
      margin-bottom: 9px;
 +
      margin-left: 0px;
 +
      margin-right: 0px;
 +
      margin-top: 7.2px;
 +
    }
 +
 
 +
    .zhengwen_disblock {
 +
      font-style: arial;
 +
      font-size: 18px;
 +
      line-height: 34px;
 +
      text-align: justify;
 +
      color: #000;
 +
      margin-bottom: 9px;
 +
      margin-left: 0px;
 +
      margin-right: 0px;
 +
      margin-top: 7.2px;
 +
    }
 +
 
 +
    .yinzhu {}
 +
 
 +
    .yinzhu:hover .yinzhu {}
 +
 
 +
    .yinwen {
 +
      display: block;
 +
      font-style: arial;
 +
      font-size: 18px;
 +
      line-height: 34px;
 +
      text-align: justify;
 +
      color: #000;
 +
      margin-bottom: 9px;
 +
      margin-left: 0px;
 +
      margin-right: 0px;
 +
      margin-top: 7.2px;
 +
    }
 +
 
 +
    .shangduiqi {
 +
      position: relative;
 +
    }
 +
 
 +
    .shangduiqi a {
 +
      position: absolute;
 +
      top: -66px;
 +
    }
 +
 
 +
    /*图片的样式*/
 +
 
 +
    .tu_1 {
 +
      width: 300px;
 +
      margin: 0 auto;
 +
      display: block;
 +
    }
 +
  </style>
 +
  <!--点击展开部分的样式-->
 +
  <style>
 +
    span.caret_black {
 +
      display: inline-block;
 +
      margin-left: 6px;
 +
      vertical-align: middle;
 +
      width: 0;
 +
      height: 0;
 +
      border-left: 6px solid transparent;
 +
      border-right: 6px solid transparent;
 +
      border-top: 6px solid black;
 +
    }
 +
 
 +
    label {
 +
      cursor: pointer;
 +
    }
 +
 
 +
    #HZAUmenu-toggle {
 +
      display: none;
 +
    }
 +
 
 +
    #HZAUmenu {
 +
      display: none;
 +
      font-size: 18px;
 +
      padding: 0 50px 0 50px;
 +
      width: 900px;
 +
      margin: 0;
 +
      color: black;
 +
    }
 +
 
 +
    #HZAUmenu>a {
 +
      color: #000;
 +
    }
 +
 
 +
    #HZAUmenu>a:hover {
 +
      color: #000;
 +
      text-decoration: none;
 +
    }
 +
 
 +
    #HZAUmenu-toggle:checked+#HZAUmenu {
 +
      display: block;
 +
    }
 +
  </style>
 +
  <style>
 +
    div.nav_body {
 +
      padding: 7px 0 7px 0;
 +
      height: 50px;
 +
    }
 +
  </style>
 +
</head>
 +
 
 +
<body data-spy="scroll" data-target="#myScrollspy" data-offset="20">
 +
  <div class="container">
 +
    <div class="row">
 +
      <nav class="col-sm-3" id="myScrollspy">
 +
        <div class="container-fluid">
 +
          <div class="container-fluid">
 +
            <ul class="nav nav-pills nav-stacked">
 +
              <li class="active" id="change_top">
 +
                <a href="#section1"></a>
 +
              </li>
 +
              <li style="margin:-2px">
 +
                <a href="#section2"></a>
 +
              </li>
 +
              <li style="margin:0px">
 +
                <a href="#section3"></a>
 +
              </li>
 +
            </ul>
 +
          </div>
 +
        </div>
 +
      </nav>
 +
      <div class="col-sm-9">
 +
        <div>
 +
          <div id="section1" class="jiaozheng">
 +
          </div>
 +
        </div>
 +
        <a class="biaoti">Model</a>
 +
        <a class="zhengwen">For control cell cycle, our wet lab sign genetic circuit to control initiation location -- OriC. Finally Replication
 +
          initiation switch. Finally, we will get the bacterium with Replication initiation switch. It’s obviously better
 +
          chosing Oric as the controlled target cause the physiological states of germs won’t be severely effected compared
 +
          with being disposed with starvation method. But it also brings us two questions:</a>
 +
        <a class="zhengwen">① How to observe OriC situation in time</a>
 +
        <a class="zhengwen">After Dry Lab’s analysis, we can tell you that switch OriC is enough to control cell cycle, even better. Because
 +
          we can create more new status such as one E,coli has 8 volume but has 1 DNA.</a>
 +
        <a class="zhengwen">② How to observe OriC situation in time?</a>
 +
        <a class="zhengwen">Cause of the limiting of our lab, we couldn’t observe the OriC in single cell directly. So Dry Lab build a model
 +
          based on a series of previous published rules to describe the coordination among chromosome replication, cell growth
 +
          and division. And now we original catch three goals: ①improve it to Mathematical formula level. ② find its inaptitude
 +
          during repressed ,define a new parameter “d” to supply it. ③ only needs one kind data so easy to obtain--Volume,enough
 +
          to calculate E.coli’s every replication process (OriC situation) and other cell cycle information in single cell
 +
          level.
 +
        </a>
 +
        <a class="zhengwen">In the process of modeling we encounter many challenges, such as Bacteria initiates multi-replication process during
 +
          one cycle.</a>
 +
        <img src="https://static.igem.org/mediawiki/2017/4/44/T--HZAU-China--BCDperiod.png" class="tu_1">
 +
        <a class="zhengwen">Figure 1. The different stages of synchronization. Ton: the light triggering the synchronization system is on. And
 +
          CRISPER system will block Oric. Tri: It won’t exert any effect when Oric is not blocked since it can’t initiate
 +
          new replication fork. Ts:time of becoming single chromosome.</a>
 +
        <img src="https://static.igem.org/mediawiki/2017/4/44/T--HZAU-China--BCDperiod.png" class="tu_1">
 +
        <a class="zhengwen">Figure 2. The different stages of the bacterium’s returning to normal. Toff: the time it takes from turning of the
 +
          light to Oric is unblocked. Tr2: time it takes for the bacteria returning to the normal state since Oric is unblocked.</a>
 +
        <a class="zhengwen">Volume and replication model</a>
 +
        <a class="zhengwen">There’s a lot of attributes for a single bacteria such as volume, weight, concentration of different kinds of proteins
 +
          and RNA, the amount of DNA and etc.but the accurate concentration of the matters can’t be directly detected due
 +
          to limited experimental conditions.Which means the variates and the concentration data the genetic circuit model
 +
          needed can’t de detected.This is a huge obstacle for the model’s accuracy.After thinking carefully, we summarized
 +
          that through the concentration of dCas9 and gRNA of the single bacteria can’t be directly acquired, the volume
 +
          of which is the easiest parameter we can get with Microfluidic photography and Flow cytometry that our project
 +
          can be evaluated on single cellular level other than bacterial colony just because we took the advantage of the
 +
          volume of the bacteria which is totally measurable and reliable.</a>
 +
        <a class="zhengwen">Thus we improved our previous work and made it formulized and softwarelized.</a>
 +
        <a class="zhengwen">1.related basic rules</a>
 +
        <a class="zhengwen">We checked some papers in the relevant research fields and summarized some rules of bacterium’s replication growth
 +
          and division, And applied them on our project.</a>
 +
        <a class="zhengwen_disblock">bac’s rule of growth</a><a>$V_{new} =V_{old}e^{\mu T}$</a>
 +
        <a class="zhengwen_disblock">bac’s rule of triggering replication innitition</a><a>$V>2^{N}V_{std}$</a>
 +
        <a class="zhengwen_disblock">reason of division: bac will definitely divide after complete</a><a>$T_{C}+T_{D}$</a>
 +
        <img src="https://static.igem.org/mediawiki/2017/4/44/T--HZAU-China--BCDperiod.png" class="tu_1">
 +
        <a class="zhengwen">Figure 3. diagrammatic sketch of the coordination among chromosome replication, cell growth and division</a>
 +
        <a class="zhengwen">2. inferring the progress flow inner the bac</a>
 +
        <a class="zhengwen">① Take the bacteria’s photo to get the volume Vold, Wait for the twait and take one photo again to get the volume Vnew</a>
 +
        <a class="zhengwen_disblock">② Calculate the growth rate according to the formula.</a><a>$\mu =\dfrac {nV_{nen}-lnV_{old}} {t_{wait}}$</a>
 +
        <a class="zhengwen_disblock">③ it can be inferred out that the upper limit of the replication folk Nmax is </a><a>$\lceil log_{2}V_{std}e^{\mu(T_{C}+T_{D})} \rceil$<a class="zhengwen_disblock">when the volume of the bac is V</a>
 +
        <a class="zhengwen_disblock">④ The volume when the bac complete stage C and getting into stage D:</a><a>$V_{D} =V_{std}e^{\mu T}$</a>
 +
        <a class="zhengwen">⑤ the progress of the smallest replication folk</a><a>$$x=
 +
          \begin{cases}
 +
          \dfrac
 +
            {lnV-lnV_{std}} {\mu T_{c}}- \lfloor \dfrac {lnV-lnV_{std}} {ln2} \rfloor \dfrac {ln2} {\mu T_{C}} ,V>V_{std}\\
 +
            \\
 +
          0,V < V_{std}
 +
          \end{cases}
 +
          $$</a>
 +
        <a class="zhengwen">⑥ Replication process of the replication folks</a><a>$$\begin{cases}
 +
          \quad \ \ \ x\\
 +
          \\
 +
          \dfrac {1} {log_{2}e^{\mu T_{c}}} + x\\
 +
          \\
 +
          \dfrac {2} {log_{2}e^{\mu T_{c}}} + x\\
 +
          \\
 +
          \quad \ \ \ .\\
 +
          \quad \ \ \ .\\
 +
          \quad \ \ \ .\\
 +
          \\
 +
          \dfrac {N_(max)} {log_{2}e^{\mu T_{c}}} + x
 +
          \end{cases}
 +
          $$</a>
 +
        <a class="zhengwen_disblock">⑦ Infer how long will the bac split</a><a>$T_{C}+T_{D} - \dfrac {lnV-lnV_{std}}{\mu}$</a>
 +
        <a class="zhengwen_disblock">⑧ Infer how long will it take for the bac to form the haploid chromosome without replication forks if all the Oric is blocked.</a><a>$T_{C}+T_{D}-xT_{C}$</a>
 +
        <a class="zhengwen_disblock">⑨ The range of volume cyclical changes:</a><a>$[\dfrac {V_{std}e^{\mu(T_{C}+T_{D})}}{2},V_{std}e^{\mu (T_{C}+T_{D})}]$</a>
 +
        <a class="zhengwen">⑩ The interval between splits under the current grow environment.</a>
 +
        <a class="zhengwen">3. when will the normal cells be really effected by Oric</a>
 +
        <img src="https://static.igem.org/mediawiki/2017/4/44/T--HZAU-China--BCDperiod.png" class="tu_1">
 +
        <a class="zhengwen_disblock">Figure 4. When the normal bac is going to form a new replication fork and Oric is blocked at this time, the replication process is really inhibited. so when Oric is unblocked, the time bac is actually effected is the time it takes to form the new replication fork:</a><a>$T_{r1}=\dfrac {ln2}{\mu}-xT_{C}. $</a><a class="zhengwen_disblock">Equal with</a><a>$T_{r1}=\dfrac {ln2}{\mu}-(\dfrac {lnV-lnV_{std}} {\mu}-\lfloor \dfrac {lnV-lnV_{std}} {ln2} \rfloor \dfrac {ln2} {\mu})$</a>
 +
        <a class="zhengwen">4. when will the abnormal cells recover to the normal, predictable stage.</a>
 +
        <a class="zhengwen">According to the Bacteria under the CRISPR control, cell Volume will become many times to normal one, but it only have one chromosome. If we allow its initiate new replication process (release its OriC), it want to initiate many OriC to recovery itself, but previous model didn’t describe this phenom, so we define a new parameter “d” to supply.</a>
 +
        <a class="zhengwen_disblock">bac’s rule of growth</a><a>$V_{new} =V_{old}e^{\mu T}$</a>
 +
        <a class="zhengwen_disblock">bac’s rule of triggering replication innitition</a><a>$V>2^{N}V_{std}$</a>
 +
        <a class="zhengwen_disblock">reason of division: bac will definitely divide after complete</a><a>$T_{C}+T_{D}$</a>
 +
        <a class="zhengwen">The triggercondition to initiate replication under abnormal situation: the shortest interval of forming two replication forks.</a>
 +
       
 +
      </div>
 +
    </div>
 +
  </div>
 +
 
 +
</body>
  
 
</html>
 
</html>

Revision as of 10:00, 1 November 2017

Model For control cell cycle, our wet lab sign genetic circuit to control initiation location -- OriC. Finally Replication initiation switch. Finally, we will get the bacterium with Replication initiation switch. It’s obviously better chosing Oric as the controlled target cause the physiological states of germs won’t be severely effected compared with being disposed with starvation method. But it also brings us two questions: ① How to observe OriC situation in time After Dry Lab’s analysis, we can tell you that switch OriC is enough to control cell cycle, even better. Because we can create more new status such as one E,coli has 8 volume but has 1 DNA. ② How to observe OriC situation in time? Cause of the limiting of our lab, we couldn’t observe the OriC in single cell directly. So Dry Lab build a model based on a series of previous published rules to describe the coordination among chromosome replication, cell growth and division. And now we original catch three goals: ①improve it to Mathematical formula level. ② find its inaptitude during repressed ,define a new parameter “d” to supply it. ③ only needs one kind data so easy to obtain--Volume,enough to calculate E.coli’s every replication process (OriC situation) and other cell cycle information in single cell level. In the process of modeling we encounter many challenges, such as Bacteria initiates multi-replication process during one cycle. Figure 1. The different stages of synchronization. Ton: the light triggering the synchronization system is on. And CRISPER system will block Oric. Tri: It won’t exert any effect when Oric is not blocked since it can’t initiate new replication fork. Ts:time of becoming single chromosome. Figure 2. The different stages of the bacterium’s returning to normal. Toff: the time it takes from turning of the light to Oric is unblocked. Tr2: time it takes for the bacteria returning to the normal state since Oric is unblocked. Volume and replication model There’s a lot of attributes for a single bacteria such as volume, weight, concentration of different kinds of proteins and RNA, the amount of DNA and etc.but the accurate concentration of the matters can’t be directly detected due to limited experimental conditions.Which means the variates and the concentration data the genetic circuit model needed can’t de detected.This is a huge obstacle for the model’s accuracy.After thinking carefully, we summarized that through the concentration of dCas9 and gRNA of the single bacteria can’t be directly acquired, the volume of which is the easiest parameter we can get with Microfluidic photography and Flow cytometry that our project can be evaluated on single cellular level other than bacterial colony just because we took the advantage of the volume of the bacteria which is totally measurable and reliable. Thus we improved our previous work and made it formulized and softwarelized. 1.related basic rules We checked some papers in the relevant research fields and summarized some rules of bacterium’s replication growth and division, And applied them on our project. bac’s rule of growth$V_{new} =V_{old}e^{\mu T}$ bac’s rule of triggering replication innitition$V>2^{N}V_{std}$ reason of division: bac will definitely divide after complete$T_{C}+T_{D}$ Figure 3. diagrammatic sketch of the coordination among chromosome replication, cell growth and division 2. inferring the progress flow inner the bac ① Take the bacteria’s photo to get the volume Vold, Wait for the twait and take one photo again to get the volume Vnew ② Calculate the growth rate according to the formula.$\mu =\dfrac {nV_{nen}-lnV_{old}} {t_{wait}}$ ③ it can be inferred out that the upper limit of the replication folk Nmax is $\lceil log_{2}V_{std}e^{\mu(T_{C}+T_{D})} \rceil$when the volume of the bac is V ④ The volume when the bac complete stage C and getting into stage D:$V_{D} =V_{std}e^{\mu T}$ ⑤ the progress of the smallest replication folk$$x= \begin{cases} \dfrac {lnV-lnV_{std}} {\mu T_{c}}- \lfloor \dfrac {lnV-lnV_{std}} {ln2} \rfloor \dfrac {ln2} {\mu T_{C}} ,V>V_{std}\\ \\ 0,V < V_{std} \end{cases} $$ ⑥ Replication process of the replication folks$$\begin{cases} \quad \ \ \ x\\ \\ \dfrac {1} {log_{2}e^{\mu T_{c}}} + x\\ \\ \dfrac {2} {log_{2}e^{\mu T_{c}}} + x\\ \\ \quad \ \ \ .\\ \quad \ \ \ .\\ \quad \ \ \ .\\ \\ \dfrac {N_(max)} {log_{2}e^{\mu T_{c}}} + x \end{cases} $$ ⑦ Infer how long will the bac split$T_{C}+T_{D} - \dfrac {lnV-lnV_{std}}{\mu}$ ⑧ Infer how long will it take for the bac to form the haploid chromosome without replication forks if all the Oric is blocked.$T_{C}+T_{D}-xT_{C}$ ⑨ The range of volume cyclical changes:$[\dfrac {V_{std}e^{\mu(T_{C}+T_{D})}}{2},V_{std}e^{\mu (T_{C}+T_{D})}]$ ⑩ The interval between splits under the current grow environment. 3. when will the normal cells be really effected by Oric Figure 4. When the normal bac is going to form a new replication fork and Oric is blocked at this time, the replication process is really inhibited. so when Oric is unblocked, the time bac is actually effected is the time it takes to form the new replication fork:$T_{r1}=\dfrac {ln2}{\mu}-xT_{C}. $Equal with$T_{r1}=\dfrac {ln2}{\mu}-(\dfrac {lnV-lnV_{std}} {\mu}-\lfloor \dfrac {lnV-lnV_{std}} {ln2} \rfloor \dfrac {ln2} {\mu})$ 4. when will the abnormal cells recover to the normal, predictable stage. According to the Bacteria under the CRISPR control, cell Volume will become many times to normal one, but it only have one chromosome. If we allow its initiate new replication process (release its OriC), it want to initiate many OriC to recovery itself, but previous model didn’t describe this phenom, so we define a new parameter “d” to supply. bac’s rule of growth$V_{new} =V_{old}e^{\mu T}$ bac’s rule of triggering replication innitition$V>2^{N}V_{std}$ reason of division: bac will definitely divide after complete$T_{C}+T_{D}$ The triggercondition to initiate replication under abnormal situation: the shortest interval of forming two replication forks.