Line 359: | Line 359: | ||
{{Heidelberg/accpanel|#005493| | {{Heidelberg/accpanel|#005493| | ||
{{Heidelberg/accord|Figure 1| | {{Heidelberg/accord|Figure 1| | ||
− | |||
'capacity': 1000000000.0, | 'capacity': 1000000000.0, | ||
'ceu0': 100000000.0, | 'ceu0': 100000000.0, | ||
Line 390: | Line 389: | ||
'vt': 1 | 'vt': 1 | ||
|fig1 | |fig1 | ||
+ | }} | ||
}} | }} | ||
}} | }} | ||
}} | }} | ||
− | |||
}} | }} | ||
{{Heidelberg/references2 | {{Heidelberg/references2 |
Revision as of 12:28, 29 October 2017
Modeling
Phage Titer
While developing PREDCEL in the lab, we simultaneously developed it in silico so that both sides could benefit from each other. One of the most important parameter of phage assisted directed evolution experiments like PREDCEL and PACE is the phage titer itself. If the phage titer drops washout can occur and the experiment has to be restarted with the disadvantage of loosing library complexity. If the phage titer increases too much, the multiplicity of infection (MOI), that means the amount of phage relative the the amount of E. coli rises too. If fore example the MOI is 10 and an E. coli can only be infected by one phage, nine out of ten phages will not infect an E. coli and thus will not evolve, but still make up most of the phage population.
Modelling concentrations in one Lagoon
Here the concentrations \(c\) of uninfected E. coli, infected E. coli and phage producing E. coli as well as the M13 phage are modelled. They are denoted with the subscripts \(_{u}\), \(_{i}\), \(_{p}\) and \(_{P}\). If the whole E. coli population is referred to, \(c_{E}\) is used. If an arbitrary E. coli population is meant, the subscript \(_{e}\) is used. The phage concentration \(c_{P}\) refers to the free phage only, phage that are contained in an E. coli they infected are not included. The used parameters include the time \(t\), the affinity of phage for E. coli \(k\), the duration between infection of an E. coli and the first phage leaving the E. coli \(t_{P}\). The three different E. coli populations each have a generation time \(t\) that is denoted with their subscript. The fitness of a phage population is \(f\).Table 1: Variables and Parameters used in this model List of all paramters and variables used in this model. When possible values are given.
Symbol | Name in source code | Value and Unit | Explanation |
---|---|---|---|
\(c \) | - | [cfu] or [pfu] | colony forming units for E. coli (cfu) or plaque forming units (pfu) for M13 phage |
\( _u\) | - | - | Subscript for uninfected E. coli |
\( _i\) | - | - | Subscript for infected E. coli |
\( _p\) | - | - | Subscript for phage-producing E. coli |
\( _e\) | - | - | Subscript any the of E. coli populations on its own |
\( _E\) | - | - | Subscript for all populations of E. coli together |
\( _P\) | - | - | Subscript for M13 phage |
\(c_{c} \) | capacity |
[cfu/ml] | Maximum concentration of E. coli possible under given conditions, important for logistic growth |
\(t\) | t |
[min] | Duration since the experiment modeled was started |
\(t_{u} \) | tu |
\(20\) min | Duration one division of uninfected E. coli |
\(t_{i} \) | ti |
\(30\) min | Duration one division of infected E. coli |
\(t_{p} \) | tp |
\(40\) min | Duration one division of phage producing E. coli |
\( t_{P}\) | tpp |
[min] | Duration between an E. coli being infected by an M13 phage and releasing the first new phage |
\(g_{e} \) | e_growth_rate |
[cfu/min] | Growth rate of E. coli, depending on the type of growth (either logistic or exponential), the current concentration \(c_{e}\), the maximum concentration \(c_{c}\), and the generation time \(t_{e}\) |
\( k\) | k |
\(3 \cdot 10^{-11}\frac{1}{cfu \cdot pfu \cdot ml \cdot min}\) | Affinity of M13 phage for E. coli |
\( \mu_{max}\) | mumax |
\(16.67 \frac{cfu}{min \cdot ml \cdot cfu}\) | Wildtype M13 phage production rate |
\( f\) | f |
? | Fitnessvalue, fraction of actual \(\mu\) and \(\mu_{max}\) |