Difference between revisions of "Team:ECUST/Hardware"

 
(22 intermediate revisions by 3 users not shown)
Line 17: Line 17:
  
 
<body>
 
<body>
<br><br><br><br><br>
+
 
 +
 
 
<center>
 
<center>
<specialh1 style="font-size: 75px; text-transform: lowercase;">
+
<img src="https://static.igem.org/mediawiki/2017/6/63/HARDWARE.png" width="100%"/>
    interlab
+
 
</specialh1><br>
+
<special2 style="font-size: 30px;"">
+
Photo-bioreactor
+
</special2>
+
 
</center>
 
</center>
 +
<br><br>
 +
 +
 +
 +
<!-- <br><br><br><br><br>
 +
<center>
 +
  <specialh1 style="font-size: 75px; text-transform: lowercase;">
 +
      hardware
 +
  </specialh1><br><br><br>
 +
  <special2 style="font-size: 30px;">
 +
  Photobioreactor
 +
  </special2>
 +
</center> -->
 +
 +
 +
 
<div class="container" style="width: 80% ; ">
 
<div class="container" style="width: 80% ; ">
 +
 +
 +
 +
 +
 +
 +
 
   <div class="row">
 
   <div class="row">
     <h1>Background</h1><br>
+
    <div class="page-header">
 +
     <h1 id="tables">Background</h1>
 +
    </div><br>
 
     <h3>The Challenge:</h3><br>
 
     <h3>The Challenge:</h3><br>
     <h4>1.1 Need more optical energy</h4><br>
+
     <h4>1.1 Need more optical energy</h4><br>
 
     <div class="style1">
 
     <div class="style1">
    <p>Accoeding our research, the culture of Rhodobactor Sphaeroides need more optical energy, which the light baffle can’t meet.</p>
+
      <p>According to our research, both hydrogen production and growth rate of <i>Rhodobacter sphaeroides 2.4.1</i>  goes up with the increase of light intensity until that reaches 600 ft-c (6500Lux) (Fig. 1)<sup> [1]</sup>. Photosynthetic bacteria can maintain the maximal hydrogen production if enough light to be continuously irradiated.</p>
     </div><br><br>
+
     </div><br>
     <h4>1.2 Lack of available Model</h4><br>
+
    <div class="row">
 +
      <div class="col-md-6">
 +
        <img src="https://static.igem.org/mediawiki/2017/9/93/Growthrate.png " alt="">
 +
      </div>
 +
      <div class="col-md-6">
 +
        <img src="https://static.igem.org/mediawiki/2017/8/87/H2_produced.png " alt="">
 +
      </div>
 +
    </div>
 +
    <center>
 +
      <p style="color: black; font-size: 8px;">Figure 1. Rates of H<sub>2</sub> production and growth of <i>R. capsulata Z-1</i> at different light intensities. </p><br><br><br>
 +
    </center>
 +
 
 +
 
 +
 
 +
     <h4>1.2 Lack of available Model</h4><br>
 
     <div class="style1">
 
     <div class="style1">
    <p>Through extensive market research, we have found that photo-reactors on the market are mainly targeted for the cultivation of algae, and are all air-lift reactors. Taking into account that there are numerous differences between the culture of algae and bacteria, meanwhile it is difficult to put a built-in light device in the airlift reactor, we finally decided to adapt the existing mechanical stirring reactor.</p><br><br>
+
      <p>Through the market survey, we found that the traditional light source in photobioreactor  is mainly external light plate or built-in lamp, each of which has a defect. Using the external light makes it difficult to take the internal light effect into account. As a result, the volume of the bacterial liquid per minute which is exposed to sufficient light is small (Fig. 2). While the built-in lamp will affect the mass transfer effect of the photobioreactor. So we decided to solve the two problems above by designing a new impeller. </p><br><br>
 
     </div>
 
     </div>
     <div><p><b>So we design a new photo-bioreactor !</b></p></div>
+
 
 +
    <div class="row">
 +
      <div class="col-md-6">
 +
        <img src="https://static.igem.org/mediawiki/2017/2/2c/WZGY.png " height="400px;">
 +
      </div>
 +
      <div class="col-md-6">
 +
        <img src="https://static.igem.org/mediawiki/2017/d/d1/JTS%E5%85%89%E5%8F%8D%E5%BA%94%E5%99%A8.png" height="400px;">
 +
      </div>
 +
    </div>
 +
    <center>
 +
      <p style="color: black; font-size: 8px;">Figure 2. The sketch map and light distribution of photobioreactor of which the light surrounds outside.</p>
 +
    </center>
 +
    <br><br><br>
 +
   
 +
 
 +
     <div><p><b>When there is only a light source in the outer jacket, the light attenuation curve is shown in Fig. 2 (left). As we can see, the light intensity in the center of the photobioreactor could not meet the maximum hydrogen production requirement.</b></p></div>
 
   </div>
 
   </div>
  
Line 45: Line 96:
  
  
<h1>Product</h1>
+
 
<h3>2.1 Main idea of designing</h3>
+
<div class="page-header">
 +
  <h1 id="tables">Product</h1>
 +
</div><br>
 +
<h3>2.1 Main idea of designing</h3><br><br>
 
<div class="style1" style="size: 20px;">
 
<div class="style1" style="size: 20px;">
<li>The internal use of steel column structure which ensures the stability of the device when stirring.</li>
+
  <li>The steel column structure internal ensures the stability of the device when stirring.</li><br>
<li>The shell uses plexiglass material, to ensure its smoothness and being waterproof at the same time, LED lights are embedded inside.</li>
+
  <li>The shell uses plexiglass material, to ensure its smoothness and being waterproof at the same time, LED lights are embedded inside.</li><br>
<li>The upper part of it uses 12-way 5V brush device, place the rotation of the lights with the line winding together.</li>
+
  <li>The upper part of it uses 12-way 5V brush device, to prevent the line from winding together caused by the rotation of the agitator.</li><br>
 
</div><br><br><br>
 
</div><br><br><br>
  
<h3>2.2 Assembly details</h3>
+
<h3>2.2 Product in reality</h3>
<div class="style1">
+
<div class="row">
<p>Many components are designed to fix our agitator on the bioreactor. We show them both in model of CAD and 3D model with specific data.</p>
+
  <div class="div_pic">
</div><br><br><br>
+
      <img class="p p1" src="https://static.igem.org/mediawiki/2017/e/e0/ZZ1.jpeg">
 +
      <img class="p p2" src="https://static.igem.org/mediawiki/2017/c/cd/ZZ2.jpeg">
 +
      <img class="p p3" src="https://static.igem.org/mediawiki/2017/a/a9/ZZ3.jpeg">
 +
  </div>
 +
</div>
 +
<br><br><br>
 +
<center>
 +
  <img src="https://static.igem.org/mediawiki/2017/e/e2/Gif.gif" height="400px;"><br><br>
 +
  <center><button type="button" class="btn btn-default btn-lg"><a href="https://static.igem.org/mediawiki/2017/a/ae/Shiping1.mp4 ">Click here to see the video.</a></button></center><br><br>
 +
</center>
  
  
  
<div class="row">
 
    <div class="bs-example table-responsive">
 
              <table class="table table-striped table-bordered table-hover">
 
                <thead>
 
                  <tr>
 
                    <th>Number</th>
 
                    <th>Components</th>
 
                  </tr>
 
                </thead>
 
                <tbody>
 
                  <tr>
 
                    <td>1</td>
 
                    <td><a href="">Collet</a></td>
 
                  </tr>
 
                  <tr>
 
                    <td>2</td>
 
                    <td><a href="">Adapter ring</a></td>
 
                  </tr>
 
                  <tr>
 
                    <td>3</td>
 
                    <td><a href="">Blade</a></td>
 
                  </tr><tr>
 
                    <td>4</td>
 
                    <td><a href="">Casket</a></td>
 
                  </tr><tr>
 
                    <td>5</td>
 
                    <td><a href="">Gland</a></td>
 
                  </tr><tr>
 
                    <td>6</td>
 
                    <td><a href="">Bush of main axle</a></td>
 
                  </tr><tr>
 
                    <td>7</td>
 
                    <td><a href="">Assembly program</a></td>
 
                  </tr>
 
  
                 </tbody>
+
<div class="page-header">
              </table>
+
  <h1 id="tables">Result</h1>
 +
</div><br>
 +
 
 +
 
 +
 
 +
<div class="panel-group" id="accordion">
 +
    <div class="panel panel-default">
 +
        <div class="panel-heading">
 +
            <h4 class="panel-title">
 +
            <a role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse1" aria-expanded="false" aria-controls="collapse1">
 +
            <div>
 +
                 <div class="col-md-11">3.1 Flow field simulation of photobioreactor</div>
 +
                <div class="col-md-1"><i class="fa fa-arrow-down fa-10" aria-hidden="true"></i></div>
 
             </div>
 
             </div>
</div><br><br><br>
+
            </a></h4>
 +
        </div>
 +
        <div id="collapse1" class="panel-collapse collapse" role="tabpanel" aria-labelledby="general">
 +
            <div class="panel-body">
  
 +
                <div class="style1">
 +
                  <p>The flow field of the whole device is simulated by the principle of fluid mechanics, and the flow field distribution in the unidirectional flow model is good and has good stirring performance. Comparing the addition of the built-in light source into the reactor with the original reactor, we found that during the same amount of time the volume of light cover greatly increased, which helps the improvement of the efficiency of the <i>Rhodobacter Sphaeroides 2.4.1</i>.</p>
 +
                </div><br><br>
  
<div class="col-md-6">
+
 
<img src="https://static.igem.org/mediawiki/2017/6/6c/Har_1.png" alt="" style="width: 500px;">
+
                <div class="col-md-6">
 +
                  <img src="https://static.igem.org/mediawiki/2017/d/da/Fn-a.jpeg " alt="" style="width: 500px;">
 +
                </div>
 +
                <div class="col-md-6">
 +
                  <img src="https://static.igem.org/mediawiki/2017/a/a6/Fn-b.jpeg" alt="" style="width: 500px;">
 +
                </div>
 +
                <center>
 +
                <p style="color: black; font-size: 8px;">Figure 3:Individual velocity flow field distribution of light-emitting agitator</p></center>
 +
            </div>
 +
        </div>
 +
    </div>
 
</div>
 
</div>
<div class="col-md-6" style="margin-top: 100px;">
+
<div class="some-padding"></div>
<p>
+
<div class="some-padding"></div>
Internal diameter of Bioreactor:278mm<br>
+
Height of Bioreactor:660mm<br>
+
Diameter of agitator:26mm<br>
+
Height of agitator:555mm<br></p>
+
</div><br><br><br>
+
  
  
  
<h3>2.3 Product in reality</h3><br><br><br>
 
  
  
<h1>Result</h1>
 
<h3>3.1 flow field simulation</h3><br><br>
 
<div class="style1">
 
<p>The flow field of the whole device is simulated by the principle of fluid mechanics, and the flow field distribution in the unidirectional flow model is good and has good stirring performance. Comparing the addition of the built-in light source into the reactor with the original reactor, we found during that the same amount of time the volume of light cover greatly increased, which helps the improvement of the efficiency of the Rhodobacter Sphaeroides.</p>
 
</div><br><br>
 
  
 
+
<div class="panel-group" id="accordion">
<div class="col-md-6">
+
    <div class="panel panel-default">
<img src="https://static.igem.org/mediawiki/2017/0/04/Har_2.png" alt="" style="width: 500px;">
+
        <div class="panel-heading">
 +
            <h4 class="panel-title">
 +
            <a role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse2" aria-expanded="false" aria-controls="collapse2">
 +
            <div>
 +
                <div class="col-md-11">3.2  Light attenuation simulation</div>
 +
                <div class="col-md-1"><i class="fa fa-arrow-down fa-10" aria-hidden="true"></i></div>
 +
            </div>
 +
            </a></h4>
 +
        </div>
 +
        <div id="collapse2" class="panel-collapse collapse" role="tabpanel" aria-labelledby="general">
 +
            <div class="panel-body">
 +
              <div class="style1">
 +
                <p>Comparing the light distribution effect in fermentor with both light-emitting agitator and light jacket with which only has light jacket, we can find that the light intensity has significantly increased. This characterizes that our new photobioreactor meet the light need of photobioreactor.</p>
 +
              </div>
 +
                <center>
 +
              <div class="col-md-12">
 +
                <img src="https://static.igem.org/mediawiki/2017/4/4a/GSJT.png" alt="" width="600px;">
 +
              </div>
 +
              <p style="color: black; font-size: 8px;">Figure 4:Light distribution of photobioreactor of which the light surrounds both outside and inside. </p>
 +
              </center>
 +
            </div>
 +
        </div>
 +
    </div>
 
</div>
 
</div>
<div class="col-md-6">
+
<div class="some-padding"></div>
<img src="https://static.igem.org/mediawiki/2017/c/cc/Har_3.png" alt="" style="width: 500px;">
+
<div class="some-padding"></div>
</div>
+
<br><br><br><br>
+
  
  
 +
<div class="row">
 +
  <div class="page-header">
 +
    <h1 id="tables">Reference</h1>
 +
  </div> 
 +
  <p>[1] Hillmer P, Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells[J]. Journal of Bacteriology, 1977, 129(2):732.</p>
 +
</div>
  
  
Line 144: Line 216:
 
</body>
 
</body>
 
</html>
 
</html>
 +
 +
{{:Team:ECUST/footer}}

Latest revision as of 03:13, 2 November 2017




The Challenge:


1.1 Need more optical energy


According to our research, both hydrogen production and growth rate of Rhodobacter sphaeroides 2.4.1 goes up with the increase of light intensity until that reaches 600 ft-c (6500Lux) (Fig. 1) [1]. Photosynthetic bacteria can maintain the maximal hydrogen production if enough light to be continuously irradiated.


Figure 1. Rates of H2 production and growth of R. capsulata Z-1 at different light intensities.




1.2 Lack of available Model


Through the market survey, we found that the traditional light source in photobioreactor is mainly external light plate or built-in lamp, each of which has a defect. Using the external light makes it difficult to take the internal light effect into account. As a result, the volume of the bacterial liquid per minute which is exposed to sufficient light is small (Fig. 2). While the built-in lamp will affect the mass transfer effect of the photobioreactor. So we decided to solve the two problems above by designing a new impeller.



Figure 2. The sketch map and light distribution of photobioreactor of which the light surrounds outside.




When there is only a light source in the outer jacket, the light attenuation curve is shown in Fig. 2 (left). As we can see, the light intensity in the center of the photobioreactor could not meet the maximum hydrogen production requirement.


2.1 Main idea of designing



  • The steel column structure internal ensures the stability of the device when stirring.

  • The shell uses plexiglass material, to ensure its smoothness and being waterproof at the same time, LED lights are embedded inside.

  • The upper part of it uses 12-way 5V brush device, to prevent the line from winding together caused by the rotation of the agitator.




  • 2.2 Product in reality









    The flow field of the whole device is simulated by the principle of fluid mechanics, and the flow field distribution in the unidirectional flow model is good and has good stirring performance. Comparing the addition of the built-in light source into the reactor with the original reactor, we found that during the same amount of time the volume of light cover greatly increased, which helps the improvement of the efficiency of the Rhodobacter Sphaeroides 2.4.1.



    Figure 3:Individual velocity flow field distribution of light-emitting agitator

    Comparing the light distribution effect in fermentor with both light-emitting agitator and light jacket with which only has light jacket, we can find that the light intensity has significantly increased. This characterizes that our new photobioreactor meet the light need of photobioreactor.

    Figure 4:Light distribution of photobioreactor of which the light surrounds both outside and inside.

    [1] Hillmer P, Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells[J]. Journal of Bacteriology, 1977, 129(2):732.