Line 9: | Line 9: | ||
<div class="column full_size"> | <div class="column full_size"> | ||
− | <h1 class="subtitle text-center">Parts</h1> | + | <h1 class="subtitle text-center">Parts</h1> |
− | <p>This year the iGEM Edinburgh_OG team focused on developing a modular toolkit using CRISPR systems and phages to re-sensitise antibiotic-resistant bacteria. As a BioBrick we submit the <em>E. coli </em>codon-optimised <em>Staphylococcus aureus Cas9</em>.</p> | + | <p>This year the iGEM Edinburgh_OG team focused on developing a modular toolkit using CRISPR systems and phages to re-sensitise antibiotic-resistant bacteria. As a BioBrick we submit the <em>E. coli </em>codon-optimised <em>Staphylococcus aureus Cas9</em>.</p> |
− | < | + | <groupparts>iGEM17 Edinburgh_OG</groupparts> |
− | <p><br /><br /><br /></p> | + | <p><br /><br /><br /></p> |
− | <p>http://www.nature.com/news/genome-editing-revolution-my-whirlwind-year-with-crispr-1.19063</p> | + | <div class="div-fig"> |
− | < | + | <img src="https://static.igem.org/mediawiki/2017/c/c6/T--Edinburgh_OG--cas.png"> |
− | <h2>How does this part work?</h2> | + | <p>http://www.nature.com/news/genome-editing-revolution-my-whirlwind-year-with-crispr-1.19063</p> |
− | <ul> | + | </div> |
− | <li>Our SaCas9 can be programmed to cleave specific target sequence followed by the PAM sequence (5’-NNGRRT-3’).</li> | + | |
− | + | <h2>How does this part work?</h2> | |
− | + | <ul> | |
− | <li>To express SaCas9, it requires suitable machinery such as promoter, RBS,and terminator.</li> | + | <li>Our SaCas9 can be programmed to cleave specific target sequence followed by the PAM sequence (5’-NNGRRT-3’).</li> |
− | <li>To programme SaCas9, you need to design guide RNA (tracrRNA [2], 21 bp spacer flanked by direct repeats [2] ).</li> | + | <li>To express SaCas9, it requires suitable machinery such as promoter, RBS,and terminator.</li> |
− | </ul> | + | <li>To programme SaCas9, you need to design guide RNA (tracrRNA [2], 21 bp spacer flanked by direct repeats [2] ).</li> |
− | <p><br /><br /><br /></p> | + | </ul> |
− | <h3>Advantages of SaCas9 compared with the conventional <em>Streptococcus pyogenes</em> Cas9:</h3> | + | <p><br /><br /><br /></p> |
− | <ul> | + | <h3>Advantages of SaCas9 compared with the conventional <em>Streptococcus pyogenes</em> Cas9:</h3> |
− | <li>Smaller size (1053 amino acids against 1368) resulting in an easier expression/delivery</li> | + | <ul> |
− | <li>Different PAM sequence recognised (5’-NNGRRT-3’ ) increasing the usability</li> | + | <li>Smaller size (1053 amino acids against 1368) resulting in an easier expression/delivery</li> |
− | <li>Higher efficiency of SaCas9 over SpCas9 [2]</li> | + | <li>Different PAM sequence recognised (5’-NNGRRT-3’ ) increasing the usability</li> |
− | </ul> | + | <li>Higher efficiency of SaCas9 over SpCas9 [2]</li> |
− | <p><br /><br /></p> | + | </ul> |
− | <p>[1] Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., Zetsche, B., Shalem, O., Wu, X., Makarova, K. S., Koonin, E. V. Sharp, P.A., Zhang, F. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 520 (7546). pp.186-191.</p> | + | <p><br /><br /></p> |
− | <p>[2] Friedland AE, Baral R, Singhal P, et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biology. 2015;16:257. doi:10.1186/s13059-015-0817-8.</p> | + | <div class="div-ref"> |
− | + | <p>[1] Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., Zetsche, B., Shalem, O., Wu, X., Makarova, K. S., Koonin, E. V. Sharp, P.A., Zhang, F. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 520 (7546). | |
− | + | pp.186-191.</p> | |
− | </ | + | <p>[2] Friedland AE, Baral R, Singhal P, et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biology. 2015;16:257. doi:10.1186/s13059-015-0817-8.</p> |
− | + | </div> | |
− | + | ||
− | + | ||
</div> | </div> | ||
Revision as of 01:10, 30 October 2017
Parts
This year the iGEM Edinburgh_OG team focused on developing a modular toolkit using CRISPR systems and phages to re-sensitise antibiotic-resistant bacteria. As a BioBrick we submit the E. coli codon-optimised Staphylococcus aureus Cas9.
http://www.nature.com/news/genome-editing-revolution-my-whirlwind-year-with-crispr-1.19063
How does this part work?
- Our SaCas9 can be programmed to cleave specific target sequence followed by the PAM sequence (5’-NNGRRT-3’).
- To express SaCas9, it requires suitable machinery such as promoter, RBS,and terminator.
- To programme SaCas9, you need to design guide RNA (tracrRNA [2], 21 bp spacer flanked by direct repeats [2] ).
Advantages of SaCas9 compared with the conventional Streptococcus pyogenes Cas9:
- Smaller size (1053 amino acids against 1368) resulting in an easier expression/delivery
- Different PAM sequence recognised (5’-NNGRRT-3’ ) increasing the usability
- Higher efficiency of SaCas9 over SpCas9 [2]
[1] Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., Zetsche, B., Shalem, O., Wu, X., Makarova, K. S., Koonin, E. V. Sharp, P.A., Zhang, F. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 520 (7546). pp.186-191.
[2] Friedland AE, Baral R, Singhal P, et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biology. 2015;16:257. doi:10.1186/s13059-015-0817-8.