Difference between revisions of "Team:Edinburgh OG/Parts"

Line 9: Line 9:
 
<div class="column full_size">
 
<div class="column full_size">
  
<h1 class="subtitle text-center">Parts</h1>
+
  <h1 class="subtitle text-center">Parts</h1>
<p>This year the iGEM Edinburgh_OG team focused on developing a modular toolkit using CRISPR systems and phages to re-sensitise antibiotic-resistant bacteria. As a BioBrick we submit the <em>E. coli </em>codon-optimised <em>Staphylococcus aureus Cas9</em>.</p>
+
  <p>This year the iGEM Edinburgh_OG team focused on developing a modular toolkit using CRISPR systems and phages to re-sensitise antibiotic-resistant bacteria. As a BioBrick we submit the <em>E. coli </em>codon-optimised <em>Staphylococcus aureus Cas9</em>.</p>
<p><strong>&lt;groupparts&gt;iGEM17 Edinburgh_OG&lt;/groupparts&gt;</strong></p>
+
  <groupparts>iGEM17 Edinburgh_OG</groupparts>
<p><br /><br /><br /></p>
+
  <p><br /><br /><br /></p>
<p>http://www.nature.com/news/genome-editing-revolution-my-whirlwind-year-with-crispr-1.19063</p>
+
  <div class="div-fig">
<p><br /><br /></p>
+
    <img src="https://static.igem.org/mediawiki/2017/c/c6/T--Edinburgh_OG--cas.png">
<h2>How does this part work?</h2>
+
  <p>http://www.nature.com/news/genome-editing-revolution-my-whirlwind-year-with-crispr-1.19063</p>
<ul>
+
</div>
<li>Our SaCas9 can be programmed to cleave specific target sequence followed by the PAM sequence (5&rsquo;-NNGRRT-3&rsquo;).</li>
+
 
</ul>
+
  <h2>How does this part work?</h2>
<ul>
+
  <ul>
<li>To express SaCas9, it requires suitable machinery such as promoter, RBS,and terminator.</li>
+
    <li>Our SaCas9 can be programmed to cleave specific target sequence followed by the PAM sequence (5&rsquo;-NNGRRT-3&rsquo;).</li>
<li>To programme SaCas9, you need to design guide RNA (tracrRNA [2], 21 bp spacer flanked by direct repeats [2] ).</li>
+
    <li>To express SaCas9, it requires suitable machinery such as promoter, RBS,and terminator.</li>
</ul>
+
    <li>To programme SaCas9, you need to design guide RNA (tracrRNA [2], 21 bp spacer flanked by direct repeats [2] ).</li>
<p><br /><br /><br /></p>
+
  </ul>
<h3>Advantages of SaCas9 compared with the conventional <em>Streptococcus pyogenes</em> Cas9:</h3>
+
  <p><br /><br /><br /></p>
<ul>
+
  <h3>Advantages of SaCas9 compared with the conventional <em>Streptococcus pyogenes</em> Cas9:</h3>
<li>Smaller size (1053 amino acids against 1368) resulting in an easier expression/delivery</li>
+
  <ul>
<li>Different PAM sequence recognised (5&rsquo;-NNGRRT-3&rsquo; ) increasing the usability</li>
+
    <li>Smaller size (1053 amino acids against 1368) resulting in an easier expression/delivery</li>
<li>Higher efficiency of SaCas9 over SpCas9 [2]</li>
+
    <li>Different PAM sequence recognised (5&rsquo;-NNGRRT-3&rsquo; ) increasing the usability</li>
</ul>
+
    <li>Higher efficiency of SaCas9 over SpCas9 [2]</li>
<p><br /><br /></p>
+
  </ul>
<p>[1] Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., Zetsche, B., Shalem, O., Wu, X., Makarova, K. S., Koonin, E. V. Sharp, P.A., Zhang, F. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 520 (7546). pp.186-191.</p>
+
  <p><br /><br /></p>
<p>[2] Friedland AE, Baral R, Singhal P, et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biology. 2015;16:257. doi:10.1186/s13059-015-0817-8.</p>
+
  <div class="div-ref">
 
+
  <p>[1] Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., Zetsche, B., Shalem, O., Wu, X., Makarova, K. S., Koonin, E. V. Sharp, P.A., Zhang, F. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 520 (7546).
 
+
    pp.186-191.</p>
</html>
+
  <p>[2] Friedland AE, Baral R, Singhal P, et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biology. 2015;16:257. doi:10.1186/s13059-015-0817-8.</p>
<groupparts>iGEM17 Edinburgh_OG</groupparts>
+
</div>
 
+
<html>
+
 
</div>
 
</div>
  

Revision as of 01:10, 30 October 2017

PhagED: a molecular toolkit to re-sensitise ESKAPE pathogens

Parts

This year the iGEM Edinburgh_OG team focused on developing a modular toolkit using CRISPR systems and phages to re-sensitise antibiotic-resistant bacteria. As a BioBrick we submit the E. coli codon-optimised Staphylococcus aureus Cas9.

iGEM17 Edinburgh_OG




http://www.nature.com/news/genome-editing-revolution-my-whirlwind-year-with-crispr-1.19063

How does this part work?

  • Our SaCas9 can be programmed to cleave specific target sequence followed by the PAM sequence (5’-NNGRRT-3’).
  • To express SaCas9, it requires suitable machinery such as promoter, RBS,and terminator.
  • To programme SaCas9, you need to design guide RNA (tracrRNA [2], 21 bp spacer flanked by direct repeats [2] ).




Advantages of SaCas9 compared with the conventional Streptococcus pyogenes Cas9:

  • Smaller size (1053 amino acids against 1368) resulting in an easier expression/delivery
  • Different PAM sequence recognised (5’-NNGRRT-3’ ) increasing the usability
  • Higher efficiency of SaCas9 over SpCas9 [2]



[1] Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., Zetsche, B., Shalem, O., Wu, X., Makarova, K. S., Koonin, E. V. Sharp, P.A., Zhang, F. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 520 (7546). pp.186-191.

[2] Friedland AE, Baral R, Singhal P, et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biology. 2015;16:257. doi:10.1186/s13059-015-0817-8.