Fmeier1994 (Talk | contribs) |
|||
(One intermediate revision by one other user not shown) | |||
Line 39: | Line 39: | ||
scnavbar.classList.remove("sticky"); | scnavbar.classList.remove("sticky"); | ||
} | } | ||
+ | } | ||
+ | |||
+ | if (versionshitie != false) { | ||
+ | scnavbar.classList.add("sticky") | ||
} | } | ||
</script> | </script> | ||
Line 91: | Line 95: | ||
<li>How could you modify the method to allow for readout on a factory floor (current methods require a micro/molecular lab)?</li> | <li>How could you modify the method to allow for readout on a factory floor (current methods require a micro/molecular lab)?</li> | ||
<li>How could you modify the method to allow for read out by non-trained people (current methods require experience in microbiology/molecular biology)?</li></ul> | <li>How could you modify the method to allow for read out by non-trained people (current methods require experience in microbiology/molecular biology)?</li></ul> | ||
− | After this conversation and considering these questions, we decided to focus on an easy-to-use device that could possibly be used on the factory floor by someone without a synthetic biology background, hence we proposed a <a href="https://2017.igem.org/Team:Groningen/Applied_Design">cartridge</a> which would have several layers of containment and very easy-to-use interface. Of course, such an application gives rise to other questions, such as safety and regulation requirements. We | + | After this conversation and considering these questions, we decided to focus on an easy-to-use device that could possibly be used on the factory floor by someone without a synthetic biology background, hence we proposed a <a href="https://2017.igem.org/Team:Groningen/Applied_Design">cartridge</a> which would have several layers of containment and very easy-to-use interface. Of course, such an application gives rise to other questions, such as safety and regulation requirements. We debated this thoroughly on our <a href="https://2017.igem.org/Team:Groningen/Safety">safety page.</a> |
</div> | </div> | ||
<hr class="small"> | <hr class="small"> | ||
Line 140: | Line 144: | ||
<h5 id="snavhansen">Christian Hansen - 13 September</h5> | <h5 id="snavhansen">Christian Hansen - 13 September</h5> | ||
<div style="text-align:left;"> | <div style="text-align:left;"> | ||
− | As part of considering the implications of our product and finding a potential market niche for it, we contacted<a href="https://www.researchgate.net/profile/Thomas_Janzen">Thomas Janzen</a>from <a href=https://www.chr-hansen.com/en">Christian Hansen</a>and video chatted with him on the 13th of September. The company mostly deals with starter cultures and tests for the presence of bacterial phages for their customers. We discovered that the current go-to method for their company is performing a plaque assay and, when required, they also resorted to using qPCR. Their test takes 2-3 days if everything works properly. Thomas mentioned three points that were of particular relevance to us. First | + | As part of considering the implications of our product and finding a potential market niche for it, we contacted<a href="https://www.researchgate.net/profile/Thomas_Janzen">Thomas Janzen</a>from <a href=https://www.chr-hansen.com/en">Christian Hansen</a>and video chatted with him on the 13th of September. The company mostly deals with starter cultures and tests for the presence of bacterial phages for their customers. We discovered that the current go-to method for their company is performing a plaque assay and, when required, they also resorted to using qPCR. Their test takes 2-3 days if everything works properly. Thomas mentioned three points that were of particular relevance to us. First that our product would be useful if it takes a few hours and is able to detect similar phage concentrations as current technologies do. We took this into consideration and are designing a final product which will (hopefully) only take a few hours. Secondly, the device will be more useful if it can detect a specific viral strain. By integrating different plasmids into our system or adjusting the plasmid for different strains, it will be able to detect specific strains. Thirdly, our device could also be used on the factory floor. Currently, European regulations prevent our device from being used on the factory floor as it contains GMO's. We however still took this into consideration by designing an on-site detection system which could potentially be used in a factory, in case the legislative hurdles are changed in the future. We designed our product as safe as possible as if it would already be allowed to use in a factory without special permits. Based on this conversation, together with the impressions we received from conversations with other factory specialists and our factory visits, we decided to broaden our horizons and look beyond the dairy industry in Europe. We tried to contact companies in some other continents which have less strict GMO standards, however, these companies never responded to our inquiries. |
</div> | </div> | ||
<hr class="small"> | <hr class="small"> |
Latest revision as of 03:11, 2 November 2017
Gold
-
When set out with our product vision, we had a rough idea of where we wanted it to head towards. It was only by considering the implications of our products beyond the lab that our product became what it is now. Our final product is a result of months of work in the lab, but beyond that, it also took shape with successive input by industrial experts, ethics experts, and visits to factories. We believe by going through this iterative process of improvement we came up with a product that is relevant to the dairy industry, safe to use and has a positive IMPACT for every party involved, from the dairy industry, consumers, and the environment to the general public. In short, we implemented the information we received from our interviews and other sources in the following ways:
- We decided to make a detector that does not come into contact with the end product.
- We decided to try to detect the presence of the SK1 bacteriophage since its especially resistant to cleaning measures.
- We designed an on-site, easy-to-use detection cartridge with redundant layers of security.
- We developed a model which can determine the likelihood of spacer incorporation for specific bacteriophages. Another model is able to predict fluorescence emissions and population dynamics depending on different infection scenarios
- We added a hydrogen peroxide compartment to the cartridge to ensure safe disposal.
- We thought of ways to implement our product both in a current scenario and a future scenario.
NIZO
DSM - 27 June
- Can differentiate up to 700 species of phages.
- Has a detection limit of 100 phages per ml.
- Has a detection time of 30 minutes to one hour.
- A detection limit of 10.000 – 100.000 would be useful as well, because that is when bacteriophage level will cause significant impairments.
Unilever - 13 July
- What is the detection limit of the method? What sample size is needed?
- Can different species (or strains) be detected in parallel?
- To what level of identification can the method be used: genus-species-strain?
- Can the method quantify live cells in the presence of dead cells of the same genus-species-strain?
- Is the method reliable enough to detect microbes in a complex food matrix (without enrichment), such as cheese, margarine, soups, powders containing spices, etc. and their ingredients?
- How would you validate the method? How does it compare to existing methods?
- How could you modify the method to allow for immediate readout (current methods take half a day up to multiple days)?
- How could you modify the method to allow for readout on a factory floor (current methods require a micro/molecular lab)?
- How could you modify the method to allow for read out by non-trained people (current methods require experience in microbiology/molecular biology)?
Dairy Factory - 10 August
When designing a product targeted towards the dairy industry, what better thing to do than visiting a dairy factory ourselves? As committed iGEM-team members, we wanted to experience dairy processes at work, on site. To this end, we were kindly invited by a major dairy company's technologist to get a tour of a cheese factory. Prior to our tour, we received safety instructions. Afterwards, we were given the opportunity to ask questions about the effect bacteriophages have on starter cultures. We learned how a bacteriophage infection is measured and how they proceed once a detection occurs. When the fermentation process is severely disrupted, either by bacteriophages or other factors, the cheese will be sliced into blocks and used for other purposes. She informed us on the occurrence of bacteriophage infections, but according to her due to strict cleaning requirements, the impact has been greatly reduced. Through this excursion, we were able to envision the sort of environment where our final product could potentially be used and directly contact the people who would work with it. As we discovered later on while visiting their innovation centre, SK1 bacteriophages are especially resistant to cleaning so we decided on using this bacteriophage for our proof of concept detection.
Arla - 22 August
We contacted Arla in Denmark via Skype and got some advice from Harry Barraza on how to communicate our project to the general public. For instance using the word ‘virus’ on the homepage of our WIKI could immediately scare people off. So it is imperative to use the word phage or bacteriophage and explain what is meant by this. We implemented this, and some other suggestions they made on our wiki. Two researchers from Arla, Sander Sieuwerts and Valery Gutsal, who also joined the conversation, were quite interested in our project and had some questions prepared. Besides that, Arla also decided to sponsor our project! We got to know which are the most often occurring phage infections and how they currently detect them.
Dairy Research Center Wageningen - 23 August
We visited the Research facility of the same major dairy company as the factory in the Netherlands to discuss our project with a Senior Nutritional Scientist, who specializes in bacteriophages. Since our project focuses on detecting bacteriophages which can negatively impact various dairy production lines, we were quite excited to hear the opinion of a senior bacteriophage research expert. He kindly elaborated on the issues he is facing during his research and provided us with helpful advice for our project. He pointed out that the use of GMOs in the dairy industry is very risky. Even though our detection device will not get in contact with the product, the factory still needs a permit to use it. This permit is accessible by the public and as the use of GMOs in Europe is still very controversial, they do not want the risk of an NGO mounting a public campaign against them. For these reasons we were not allowed to name the company or the person, we spoke to on this day. Our detection device could, however, be useful in their research laboratory. Current detection techniques are not able to detect new bacteriophages. If we could implement a way that new bacteriophage sequences can be obtained, this would go a long way in selling our device to a potential customer. Since this is not implemented in our current design due to the strict timeline which we are working with, we have taken this into consideration while thinking about the future scientific outlook of our project. This conversation let us to consider how we could make our product most attractive to food industries. We started looking into legislation about the use of GMOs outside of a lab. On our future outlook page we came up with a potential solution for this problem.