Difference between revisions of "Team:Groningen/test2"

Line 1: Line 1:
{{test}}
+
{{Groningen}}
 
<html>
 
<html>
 
<style>
 
 
#myScrollspy
 
{
 
    top:400px;
 
    background-color: #fff;
 
    position: absolute;
 
    width: 250px;
 
    display:block;
 
    //height: 100%;
 
    margin-left: -250px; //main-col 750px
 
}
 
#myScrollspy ul
 
{
 
    list-style:none;
 
    margin:0;
 
}
 
#myScrollspy ul a
 
{
 
    display:block; //block lenght a
 
    z-index: 2000;
 
    width:100%;
 
    height:100%;
 
 
    color: black;
 
    text-decoration:none;
 
    font-weight:700;
 
    font-size:15px;
 
    line-height:40px;
 
    padding:0 20px;
 
}
 
#myScrollspy ul li
 
{
 
    //display:block;
 
 
    margin:0;
 
    padding:0;
 
    width:100%;
 
    height:100%;
 
}
 
 
#myScrollspy ul li.active
 
{background:green;}
 
#myScrollspy ul li.active:hover
 
{background-color:rgba(255, 170, 170, 0.25);}
 
#myScrollspy ul li:hover
 
{background-color:rgba(160, 192, 239, 0.25);}
 
 
#myScrollspy.sticky {
 
  position: fixed;
 
  top: 48px;
 
}
 
</style>
 
  
 
<body onscroll="stickyfunc()">
 
<body onscroll="stickyfunc()">
 
+
  <div class="marginsnav">
<div class="marginsnav">
+
    <div class="main-col scrollcol">
<div class="main-col scrollcol">
+
  
 
<nav id="myScrollspy">
 
<nav id="myScrollspy">
 
   <ul class="nav">
 
   <ul class="nav">
     <li class="active"><a href="#snavintrodus">Introduction</a></li>
+
     <li class="active"><a href="#snav1">Restriction digestion</a></li>
     <li><a href="#snavhcas9">hCas9</a></li>
+
     <li><a href="#snav2">Ligation</a></li>
     <li><a href="#snavdcas9">dCas9</a></li>
+
     <li><a href="#snav3">Gibson assembly</a></li>
     <li><a href="#snavreport">Reporter</a></li>
+
     <li><a href="#snav4">Preparing competent <i>E. coli</i></a></li>
     <li><a href="#snavlactool">Lactis Toolbox</a></li>
+
    <li><a href="#snav5">Preparing competent <i>L. lactis</i></a></li>
     <li><a href="#snavreffie">References</a></li>
+
    <li><a href="#snav6">Transformation <i>E. coli</i></a></li>
 +
    <li><a href="#snav7">Electrotransformation <i>L. lactis</i></a></li>
 +
    <li><a href="#snav8">Colony PCR</a></li>
 +
    <li><a href="#snav10">Taq PCR</a></li>
 +
    <li><a href="#snav17">HotStar HiFidelity PCR</a></li>
 +
    <li><a href="#snav11">Phusion PCR</a></li>
 +
    <li><a href="#snav12">PCR cleanup</a></li>
 +
    <li><a href="#snav13">Gel extraction</a></li>
 +
    <li><a href="#snav14">Plasmid isolation</a></li>
 +
    <li><a href="#snav18">Phenol extraction</a></li>
 +
     <li><a href="#snav19">Ethanol DNA precipitation</a></li>
 +
     <li><a href="#snav16">Antibiotic</a></li>
 
   </ul>
 
   </ul>
 
</nav>
 
</nav>
Line 82: Line 38:
 
     scnavbar.classList.remove("sticky");
 
     scnavbar.classList.remove("sticky");
 
   }
 
   }
 +
}
 +
 +
if (versionshitie != false) {
 +
  scnavbar.classList.add("sticky")
 
}
 
}
 
</script>
 
</script>
  
 
+
<h1> Protocols</h1>
<h1>Design</h1>
+
 
+
<h4 id="snavintrodus"> Introduction </h4>
+
 
+
<p class="left">
+
  <img class="imglabh" style="width: 25%; display:inline-block; float:right; margin-bottom:10px; margin-left:10px;" src="https://static.igem.org/mediawiki/2017/thumb/f/fd/Mart_design.jpg/450px-Mart_design.jpg" alt="Design master">
+
 
+
The model results allow us to assume with reasonable certainty which spacers are likely to get incorporated. But more broadly, what is actually required for a CRISPR based bacteriophage detection system?
+
First off, the bacteriophage sequence has to get incorporated into a spacer array. This requires several different Cas proteins. We worried that the natural spacer adaptation rate would be too low, so we opted for an improved, hyperactive, hCas9 protein together with Cas1, Cas2 and csn2. The altered version displays improved features, especially concerning the speed and therefore the quantity of spacer incorporation. We expect the likelihood of the correct spacer to be adapted to increase proportionally with an increase in total quantity of adaptation.
+
This subsystem would already allow for resistance and in essence mimics the natural CRISPR immune system.  But then again, we do not wish to replicate the natural CRISPR mechanism but utilize its potential for a detection mechanism.
+
This leads to our other subprojects, the dCas9 and the reporter system. The gRNAs that the hCas9 array produces can be used by a catalytically dead Cas9 protein as well. The gRNAs allow the dCas9 to target the reporter plasmid. This plasmid contains spacer inserts upstream of a GFP protein. Binding of the dCas9 protein will sterically hinder transcription of the GFP gene causing a detectable decrease in fluorescence. Essentially, if the matching protospacer gets incorporated into the array and then leads to a decrease in GFP fluorescence, you can safely assume the presence of the respective bacteriophage.
+
In the following paragraphs, we would like to elaborate on the manner how we envision our design and system to look like in more detail and how much we achieved during our project.
+
</p>
+
 
+
<hr>
+
 
<br>
 
<br>
 
+
<ol>
<h4 id="snavhcas9" class="left">hCas9</h4>
+
<li id="snav1"><b>Restriction Digestion</b>
<ul>
+
   <ol type=a>
   <h5 class="left">Biobrick construction</h5>
+
  <li>Materials
As a basis for the biobrick compatible hCas9 operon we used the Cas9 CRISPR operon from <i>Streptococcus pyogenes</i>. To make this into a biobrick compatible hCas9 operon we had to introduce the I473F mutation <a class="mouseover" title="Heler, R. et al. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer
+
  <ol type=i>
Sequences during the CRISPR-Cas Immune Response. Mol. Cell 65, 168–175 (2017)
+
    <li>(1) 8-tube strip, or (3) 0.6ml thin-walled tubes</li>
">[(Heler (2017)]</a>, remove the prohibited restriction sites it contained and attach the biobrick prefix and suffix.
+
    <li>BioBrick Part in BioBrick plasmid (Purified DNA, > 16ng/μl)</li>
<p>To achieve this we used a combination of synthetic DNA (gBlocks) and DNA fragments that were PCR amplified from pWJ40 (containing the Cas9 operon, <a href="https://static.igem.org/mediawiki/2017/6/68/PWJ40-sequence.pdf">plasmid map</a>), which both our supervisor Chenxi gave us. All fragments were finally put together using Gibson assembly. All cloning steps were performed in <i>E. coli DH5α</i>.  Figure 1 gives an overview of all the cloning steps that were used.
+
    <li>dH2O</li>
</p>
+
    <li>NEB Buffer 2</li>
 
+
    <li>BSA</li>
<li>The first gblock was used to remove the XbaI site and introduce the iGEM prefix and suffix. This part was first placed in the pSB1A3 vector to form the backbone for the Gibson assembly. The plasmid had to be linearized using PCR before it could be put together with the other fragments. </li>  
+
    <li>Restriction Enzymes: EcoRI, SpeI, XbaI, PstI</li>
<li>The second gblock was used to introduce the I473F mutation and remove the EcorI site. </li>
+
  </ol>
<li>The PCR fragments that were amplified from the pWJ40 plasmid were designed in such a way that they already contained the overhangs for the Gibson assembly. </li>
+
  <li>Procedure
 
+
    <ol type=i>
<p>To combine all the fragments that we created we used a Gibson assembly. After transformation the product into <i>E. coli DH5α</i> and isolation of the plasmid, several PCR reactions were performed with different primers to confirm that it contained the desired product. After the gels seemed to be correct we sent the plasmid for sequencing and further verification. Unfortunately, it turned out that the gblock containing the I473F mutation used for the assembly was not synthesized correctly. It did not contain the correct sequence, however it still had the expected size which is why we did not catch it earlier when we checked it on gel. Due to time constraints of the parts submission deadline, we were not able to order the gblock again and repeat the construction of the biobrick compatible hCas9. We encourage next iGEM teams to pick up where we left as hCas9 seems to be a valuable addition to the iGEM registry! </p>
+
    <li>Add 250ng of DNA to be digested, and adjust with dH20 for a total volume of 16 μl</li>
Besides the hCas9 operon the tracer RNA and the spacer array are also required to get a successful CRISPR response. In this project we constructed biobrick compatible tracer RNA and several pre-programmed spacers arrays. We ordered the tracer RNA as a gblock in combination with the constitutive promoter pUSP45. The sequence of the tracer RNA gene was taken from the <i>S. Pyogenes</i> genome and the sequence of the pUSP45 promoter was provided by one of our supervisors. Since the tracer RNA is functional as RNA, and has no start codon, we had to precisely position the tracer RNA gene relative to the promoter.
+
    <li>Add 2.5 μl of NEBuffer 2.1</li>
 +
    <li>Check here for buffer selection (depending on the enzyme)</li>
 +
    <li>Add 0.5 μl of BSA</li>
 +
    <li>Add 0.5 μl of EcoRI</li>
 +
    <li>Add 0.5 μl of PstI</li>  
 +
    <li>There should be a total volume of 20 μl. Mix well and spin down briefly</li>
 +
    <li>Incubate the restriction digest at 37°C for 30 min</li>
 +
    <li>If prevention of self-ligation of backbone is recommended: add 0.5 μl alkaline phosphatase and incubate for another 20 min 37°C.</li>
 +
    <li>Incubate at 80°C for 20 min to heat kill the enzymes. <i>We incubate in a thermal cycler with a heated lid</i></li>
 +
    <li>Run a portion of the digest on a gel (8 μl, 100ng), to check that both plasmid backbone and part length are accurate.</li>
 +
    </ol>
 +
  </li>
 +
    <li>Source
 +
    <ol type=i>
 +
      <li><a href="http://parts.igem.org/Help:Protocols/Restriction_Digest">iGEM</a></li>
 +
    </ol>
 +
    </li>
 +
  </li>
 +
  </ol>
 +
</li>
 +
<br>
 
<br>
 
<br>
 +
<li id="snav2"><b>Ligation</b>
 +
  <ol type=a>
 +
  <li>Materials
 +
    <ol type=i>
 +
    <li>Digested backbone & inserts</li>
 +
    <li>T4 DNA ligase</li>
 +
    <li>T4 DNA ligase buffer</li>
 +
    </ol>
 +
  </li>
 +
  <li>Procedure
 +
    <ol type=i>
 +
    <li>Add 2 μl of digested plasmid backbone (25 ng)</li>
 +
    <li>Add equimolar amount of EcoRI-HF SpeI digested fragment (< 3 μl)</li>
 +
    <li>Add equimolar amount of XbaI PstI digested fragment (< 3 μl)</li>
 +
    <li>Molar ratios of 1:1, 1:10, 1:20 are recommended</li>
 +
    <li>Add 1 μl T4 DNA ligase buffer. Note: Do not use quick ligase</li>
 +
    <li>Add 0.5 μl T4 DNA ligase</li>
 +
    <li>Add water to 10 μl</li>
 +
    <li>Ligate 16C/30 min, heat kill 80C/20 min</li>
 +
    <li>Transform with 1-2 μl of product</li>
 +
    </ol>
 +
  </li>
 +
  <li>Source
 +
    <ol type=i>
 +
    <li><a href="http://parts.igem.org/Help:Protocols/Ligation">iGEM</a></li>
 +
    </ol>
 +
  </li>
 +
  </ol>
 +
</li>
 +
<br>
 +
<li id="snav3"><b>Gibson assembly</b>
 +
  <ol type=a>
 +
  <li>Materials
 +
    <ol type=i>
 +
    <li>Compatible Fragments</li>
 +
    <li>Gibson Assembly Master Mix 2x</li>
 +
    <li>Positive control (NEB)</li>
 +
    </ol>
 +
  </li>
 +
  <li>Procedure
 +
    <table style="width:100%">
 +
    <tr>
 +
      <th> </th>
 +
      <th>2-3 Fragment Assembly</th>
 +
      <th>4-6 Fragment Assembly</th>
 +
      <th>Positive Control**</th>
 +
    </tr>
 +
    <tr>
 +
      <td>Total Amount of Fragments</td>
 +
      <td>0.02–0.5 pmols* X μl</td>
 +
      <td>0.2–1 pmols* X μl</td>
 +
      <td>10 μl</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Gibson Assembly Master Mix (2X)</td>
 +
      <td>10 μl</td>
 +
      <td>10 μl</td>
 +
      <td>10 μl</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Deionized H2O</td>
 +
      <td>10-X μl</td>
 +
      <td>10-X μl</td>
 +
      <td>0</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Total Volume</td>
 +
      <td>20 μl***</td>
 +
      <td>20 μl***</td>
 +
      <td>20 μl</td>
 +
    </tr>
 +
    </table>
 +
  </li>
 +
  <li>Source
 +
    <ol type=i>
 +
    <li><a href="https://www.neb.com/-/media/catalog/datacards-or-manuals/manuale2621.pdf">NEB</a></li>
 +
    </ol>
 +
  </li>
 +
  </ol>
 +
</li>
 +
<br>
 +
<li id="snav4"><b>Preparing competent <i>E. coli</i> DH5α cells</b>
 +
  <ol type=a>
 +
  <li>Materials
 +
    <ol type=i>
 +
    <li>Plate or stock of <i>E.coli</i> DH5α cell</li>
 +
    <li><a class="mouseover" title="Dissolve the following in 1 L ddH2O
 +
10 g bacto-tryptone
 +
5 g bacto-yeast extract
 +
10 g NaCl
 +
Adjust to pH 7.0 with NaOH">LB</a></li>
 +
    <li><a class="mouseover" title="5g PEG 8000
 +
1.5 mL 1M MgCl2 (or 0.30g MgCl2*6H20)
 +
2.5 mL DMSO
 +
Add LB to 50 mL
 +
Filter sterilize (0.22 μm filter)">TSS buffer</a></li>
 +
    <li>Ice</li>
 +
    </ol>
 +
  </li>
 +
  <li>Procedure
 +
    <ol type=i>
 +
    <li>Grow 5ml overnight culture of cells in LB media, dilute this culture back into 25-50ml of fresh LB media in a 200ml conical flask.</li>
 +
    <li>In the morning You should aim to dilute the overnight culture by at least 1/100.</li>
 +
    <li>Grow the diluted culture to an OD600 of 0.2 - 0.5. (You will get a very small pellet if you grow 25ml to OD600 0.2)</li>
 +
    <li>Put Eppendorf tubes on ice now so that they are cold when cells are aliquoted into them later. If your culture is X ml, you will need X tubes. At this point you should also make sure that your TSS is being cooled (it should be stored at 4°C but if you have just made it fresh then put it in an ice bath).</li>
 +
    <li>Split the culture into two 50ml falcon tubes and incubate on ice for 10 min.</li>
 +
    <li>All subsequent steps should be carried out at 4°C and the cells should be kept on ice whenever possible.</li>
 +
    <li>Centrifuge for 10 minutes at 3000 rpm and 4°C.</li>
 +
    <li>Decant supernatant, remove leftover media by carefully pipetting</li>
 +
    <li>Resuspend in TSS buffer (10% of original volume), vortex gently</li>
 +
    <li>Add 100 μl aliquots to chilled Eppendorfs, flash freeze and store at – 80°C in 200 µl aliquots.</li>
 +
    </ol>
 +
  </li>
 +
  <li>Source
 +
    <ol type=i>
 +
    <li><a href="https://openwetware.org/wiki/Preparing_chemically_competent_cells">Openwetware</a></li>
 +
    </ol>
 +
  </li>
 +
  </ol> 
 +
</li>
 +
<br>
 +
<li id="snav5"><b>Making competent Lactococcus <i>L. lactis</i> NZ9000 cells</b>
 +
  <ol type=a>
 +
  <li>Materials
 +
    <ol type=i>
 +
    <li><a class="mouseover" title="Dissolve the following in 1L ddH2O
 +
5.0 g Pancreatic Digest of Casein
 +
5.0 g Soy Peptone
 +
5.0 g Beef Extract
 +
2.5 g Yeast Extract
 +
0.5 g Ascorbic Acid
 +
0.25 g Magnesium Sulfate
 +
10.0 g Disodium-β-glycerophosphate">M17</a></li>
 +
    <li><a class="mouseover" title="M17
 +
0.5% glucose">GM17</a></li>
 +
    <li><a class="mouseover" title="M17
 +
0.5 M sucrose
 +
0.5 % glucose
 +
2% glycine">SGM17 + glycine</a></li>
 +
    <li><a class="mouseover" title="0.5 M sucrose
 +
10% glycerol">Electroporation buffer</a></li>
 +
    </ol>
 +
  </li>
 +
    <li>Procedure
 +
    <ol type=a>
 +
      <li>Grow cells overnight in 25ml of GM17</li>
 +
      <li>Add 1ml of overnight culture into 25ml SGM17 + glycine</li>
 +
      <li>Grow for ~4 hours until OD600 ~ 0.7</li>
 +
      <li>Chill culture on ice for 10 mins</li>
 +
      <li>Centrifuge cells for 15 mins at 3000g</li>
 +
      <li>Gently shake to resuspend pellet in 3ml Electroporation Buffer</li>
 +
      <li>Centrifuge cells for 15 mins at 3000g</li>
 +
      <li>Resuspend pellet in 3ml Electroporation Buffer</li>
 +
      <li>Centrifuge cells for 15 mins at 3000g</li>
 +
      <li>Resuspend pellet in 500 µl Electroporation Buffer</li>
 +
      <li>Separate into 100 µl aliquots and store at -80°C until use.</li>
 +
    </ol>
 +
    </li>
 +
    <li>Source
 +
    <ol type=i>
 +
      <li><a href="https://openwetware.org/wiki/Lactococcus_transformation">Openwetware</a></li>
 +
    </ol>
 +
    </li>
 +
  </ol>
 +
<br>
 +
</li>
 +
<li id="snav6"><b>Transformation <i>E.coli</i> DH5α</b>
 +
  <ol type=a>
 +
  <li>Materials
 +
    <ol type=i>
 +
    <li>Plasmid DNA</li>
 +
    <li>Competent <i>E. coli</i> DH5α cells: 50 µl per transformation</li>
 +
    <li><a class="mouseover" title="1% Yeast Extract
 +
4% Tryptone
 +
40 mM Glucose
 +
Store at 4°C">2x SOC stock</a></li>
 +
    <li><a class="mouseover" title="1 M NaCl
 +
250 mM KCl
 +
1 M MgCl2
 +
1 M MgSO4
 +
Store at 4°C">SOC salt stocks</a></li>
 +
    <li>Sterile MQ</li>
 +
    <li>LB agar selection plates: Two per transformation</li>
 +
    <li>Eppendorf tubes</li>
 +
    <li>Floater</li>
 +
    <li>Ice</li>
 +
    <li>42°C water bath</li>
 +
    <li>37°C incubator: both shaker and stove</li>
 +
    <li>Sterile spreader/glass beads</li>
 +
    </ol>
 +
  </li>
 +
  <li>Procedure (on ice)
 +
    <ol type=i>
 +
    <li>Thaw competent cells on ice. When using multiple aliquots, first pool all cells into a single volume to homonogize the solution.  Dispose of unused competent cells. Do not refreeze since reusing thawed cells, will drastically reduce transformation efficiency.</li>
 +
    <li>Pipet 50 µl of competent cells into Eppendorf tube for each transformation (labeled, prechilled, in floating rack), don’t forget control tubes</li>
 +
    <li>Pipet 1-100 ng of DNA as well as control into tubes and gently mix with tip</li>
 +
    <li>incubate on ice for 30 min, tubes may be gently flicked, return to ice ASAP</li>
 +
    <li>Meanwhile, for every transformation, add 2 µl of each SOC salt solution into 100 µl 2x SOC stock and ad to 200 µl with sterile MQ. Place the SOC medium on ice till use</li> 
 +
    <li>Heat shock tubes at 42°C for 30 seconds (precisely)</li>
 +
    <li>Incubate on ice for 5 min</li>
 +
    <li>Add 200 µl of SOC medium to each transformation</li>
 +
    <li>Incubate at 37°C for 1 hours, shaker or rotor recommended</li>
 +
    <li>Pipet 20 µl & 200 µl transformation mixture onto petri plates and spread with sterilized spreader or glass beads. Let the plates dry near the flame before placing them in the incubator</li>
 +
    <li>Incubate plates upside down overnight (14-18hr) at 37°C</li>
 +
    <li>Pick single colonies</li>
 +
    <li>Perform Colony PCR to verify</li>
 +
    <li>Grow cells & miniprep</li>
 +
    <li>Calculate efficiency by counting colonies (expected value: 1.5x10^8 to 6x10^8 cfu/µg DNA)</li>
 +
    </ol>
 +
  </li>
 +
  <li>Source
 +
    <ol type=i>
 +
    <li><a href="http://parts.igem.org/Help:Protocols/Transformation">iGEM</a></li>
 +
    </ol>
 +
  </li>
 +
  </ol> 
 +
</li>
 +
<br>
 +
<li id="snav7"><b>Electrotransformation <i>L. Lactis</i></b>
 +
  <ol type=a>
 +
  <li>Materials
 +
    <ol type=i>
 +
    <li>Plasmid DNA (preferably without salts from buffers. These can be removed by incubating the DNA on a filter, which is floating on MQ for 10 minutes at room temperature</li>
 +
    <li>Electrocompetent <i>L. lactis</i> cells: 50 µl per transformation</li>
 +
    <li><a class="mouseover" title="M17
 +
0.5% glucose
 +
0.5 M sucrose
 +
2 mM MgCl2
 +
2 mM CaCl2">Recovery medium</a></li>
 +
    <li>Electroporation Cuvettes</li>
 +
    <li>Electroporator</li>
 +
    <li>SGM17 agar selection plates</li>
 +
    <li>Eppendorf tubes</li>
 +
    <li>Ice</li>
 +
    <li>Eppendorf centrifuge</li>
 +
    <li>30°C incubator</li>
 +
    <li>Sterile spreader/glass beads</li> 
 +
    </ol>
 +
  </li>
 +
  <li>Procedure
 +
    <ol type=i>
 +
    <li>Mix all elements of the recovery medium (1 ml per transformation) and place it on ice together with the electroporation cuvettes</li>
 +
    <li>Thaw competent cells on ice. When using multiple aliquots, first pool all cells into a single volume to homonogize the solution.  Dispose of unused competent cells. Do not refreeze since reusing thawed cells, will drastically reduce transformation efficiency.</li>
 +
    <li>Pipet 50 µl of competent cells into Eppendorf tube for each transformation (labeled, prechilled, in floating rack), don’t forget control tubes</li>
 +
    <li>Add at most 5 µl of plasmid DNA to the competent cells and incubate on ice for 10 minutes</li>
 +
    <li>Dry the cuvette, electroporate at 2500 V and carefully add 950 µl recovery medium to the cells. Place the cuvette back on ice and incubate for 10 minutes</li>
 +
    <li>Transfer the cell suspension with careful mixing into Eppendorf tubes and incubate for 2 hours at 30°C</li>
 +
    <li>Plate 100 µl of the recovered cells onto a selection plate and spin down the remaining cells at 6000 rpm for 5 minutes</li>
 +
    <li>Resuspend cell pellet into 50-100 µl and plate on a selection plate</li>
 +
    <li>Incubate the plates at 30°C for 24 - 48 hours</li>
 +
    </ol>
 +
  </li>
 +
  <li>Source
 +
    <ol type=i>
 +
    <li><a href="https://openwetware.org/wiki/Lactococcus_transformation">Openwetware</a></li>
 +
    </ol>
 +
  </li>
 +
  </ol>
 +
</li>
 +
<br>
 +
<li id="snav8"><b>Colony PCR</b>
 +
  <ol type=a>
 +
  <li>Materials
 +
    <ol type=i>
 +
    <li>10X Standard Taq Reaction Buffer</li>
 +
    <li>10 mM dNTPs</li>
 +
    <li>10 µM Forward Primer</li>
 +
    <li>10 µM Reverse Primer</li>
 +
    <li>Template DNA (colony resuspended in MQ / plasmid DNA)</li>
 +
    <li>Taq DNA Polymerase</li>
 +
    <li>Nuclease-free water</li>
 +
    <li>PCR tubes</li>
 +
    <li>Ice</li>
 +
    <li>PCR tube rack</li>
 +
    </ol>
 +
  </li>
 +
  <li>Procedure
 +
    <ol type=i>
 +
    <li>Suspend a colony in 10 µl sterile MQ</li>
 +
    <li>Prepare Mastermix for 10 reactions according to:
 +
      <table style="width:100%">
 +
      <tr>
 +
        <th>Component</th>
 +
        <th>220 µl = 10 colonies</th>
 +
        <th>Final Concentration</th>
 +
      </tr>
 +
      <tr>
 +
        <td>10X Standard Taq (Mg-free) Reaction Buffer</td>
 +
        <td>22 µl</td>
 +
        <td>1X</td>
 +
      </tr>
 +
      <tr>
 +
        <td>25 mM MgCl2</td>
 +
        <td>13,2 µl</td>
 +
        <td>1.5 mM</td>
 +
      </tr>
 +
      <tr>
 +
        <td>10 mM dNTPs</td>
 +
        <td>4,4 µl</td>
 +
        <td>200 µM</td>
 +
      </tr>
 +
      <tr>
 +
        <td>10 µM pJET fw</td>
 +
        <td>4,4 µl</td>
 +
        <td>0.2 µM (0.05–1 µM, typically 0.1-0.5µM)</td>
 +
      </tr>
 +
      <tr>
 +
        <td>10 µM pJET rv</td>
 +
        <td>4,4 µl</td>
 +
        <td>0.2 µM (0.05–1 µM, typically 0.1-0.5µM)</td>
 +
      </tr>
 +
      <tr>
 +
        <td>Taq DNA Polymerase</td>
 +
        <td>1,1 µl</td>
 +
        <td>1.25 units/50 µl PCR</td>
 +
      </tr>
 +
      <tr>
 +
        <td>Nuclease-free water</td>
 +
        <td>148,5 µl</td>
 +
        <td>-</td>
 +
      </tr>
 +
      </table>
 +
    </li>
 +
    <li>Put 19 µl of mastermix in each reaction tube & add 2 µl suspended colony mixture</li>
 +
    <li>Add 2 µl plasmid DNA for positive control and 2 µl MQ for the negative control</li>
 +
    <li>Place the tubes in the PCR machine (Taq program)</li>
 +
    <li>Once the PCR is done, mix 10 µl of PCR product with 2 µl 6X purple gel loading dye and run it on a gel for 50 minutes at 130 Volts</li>
 +
    <li>If the correct products are present in the gel samples, inoculate overnight cultures from the original plates.</li>
 +
    <li>Mix 5 ml LB with appropriate antibiotic. Scoop a colony from the plate and drop the tip into the medium. Incubate the tube at 37°C overnight to let the culture grow</li>
 +
    </ol>
 +
  </li>
 +
  <li>Source
 +
    <ol type=i>
 +
    <li><a href="https://www.qiagen.com/us/resources/download.aspx?id=c73208eb-a83e-40c4-a9b6-ea5c4c94b9f4&lang=en">Qiagen</a></li>
 +
    </ol>
 +
  </li>
 +
  </ol>
 +
</li>
 +
<br>
 +
<li id="snav10"><b>Taq PCR</b>
 +
  <ol type=a >
 +
  <li>Materials according to table</li>
 +
  <li>Procedure
 +
    <ol type=i>
 +
    <li>Mix according to table
 +
      <table style="width:100%">
 +
      <tr>
 +
        <th>Component</th>
 +
        <th>25 μl reaction</th>
 +
        <th>50 μl reaction</th>
 +
        <th>Final Concentration</th>
 +
      </tr>
 +
      <tr>
 +
        <td>10X Standard Taq Reaction Buffer</td>
 +
        <td>2.5 μl</td>
 +
        <td>5 μ</td>
 +
        <td>1X</td>
 +
      </tr>
 +
      <tr>
 +
        <td>10 mM dNTPs</td>
 +
        <td>0.5 µl</td>
 +
        <td>1 μl</td>
 +
        <td>200 µM</td>
 +
      </tr>
 +
      <tr>
 +
        <td>10 µM Forward Primer</td>
 +
        <td>0.5 µl</td>
 +
        <td>1 μl</td>
 +
        <td>0.2 µM (0.05–1 µM)</td>
 +
      </tr>
 +
      <tr>
 +
        <td>10 µM Reverse Primer</td>
 +
        <td>0.5 µl</td>
 +
        <td>1 μl</td>
 +
        <td>0.2 µM (0.05–1 µM)</td>
 +
      </tr>
 +
      <tr>
 +
        <td>Template DNA</td>
 +
        <td>variable</td>
 +
        <td>variable</td>
 +
        <td>1,000 ng</td>
 +
      </tr>
 +
      <tr>
 +
        <td>Taq DNA Polymerase</td>
 +
        <td>0.125 µl</td>
 +
        <td>0.25 µl</td>
 +
        <td>1.25 units/50 µl PCR</td>
 +
      </tr>
 +
      <tr>
 +
        <td>Nuclease-free water</td>
 +
        <td>to 25 µl</td>
 +
        <td>to 50 µl</td>
 +
        <td>-</td>
 +
      </tr>
 +
      </table>
 +
    </li>
 +
    <li>PCR cycler conditions
 +
      <table style="width:100%">
 +
      <tr>
 +
        <th>Step</th>
 +
        <th>Temperature</th>
 +
        <th>Time</th>
 +
      </tr>
 +
      <tr>
 +
        <td>Initial Denaturation</td>
 +
        <td>95°C</td>
 +
        <td>30 sec</td>
 +
      </tr>
 +
      <tr>
 +
        <td>30 cycles</td>
 +
        <td>95°C</td>
 +
        <td>15-30 sec</td>
 +
      </tr>
 +
      <tr>
 +
        <td>30 cycles</td>
 +
        <td>45°C-68°C</td>
 +
        <td>15-60 sec</td>
 +
      </tr>
 +
      <tr>
 +
        <td>30 cycles</td>
 +
        <td>68°C</td>
 +
        <td>1 min/ kb</td>
 +
      </tr>
 +
      <tr>
 +
        <td>Final extension</td>
 +
        <td>68°C</td>
 +
        <td>5 min</td>
 +
      </tr>
 +
      <tr>
 +
        <td>Hold</td>
 +
        <td>4-10°C</td>
 +
        <td>-</td>
 +
      </tr>
 +
      </table>
 +
    </li>
 +
    </ol>
 +
    <li>Source
 +
    <ol type=i>
 +
      <li><a href="https://www.neb.com/protocols/1/01/01/taq-dna-polymerase-with-standard-taq-buffer-m0273">NEB</a></li>
 +
    </ol>
 +
    </li>
 +
  </li>
 +
  </ol>
 +
</li>
 +
<br>
 +
<li id="snav17"><b>HotStar HiFidelity PCR</b>
 +
  <ol type=a >
 +
  <li>Materials according to table</li>
 +
    <li>Procedure
 +
    <ol type=i>
 +
    <li>Mix according to table
 +
      <table style="width:100%">
 +
      <tr>
 +
        <th>Component</th>
 +
        <th>Volume/reaction products</th>
 +
        <th>Final Concentration</th>
 +
      </tr>
 +
      <tr>
 +
        <td>5x HotStar HiFidelity PCR Buffer (contains dNTPs)</td>
 +
        <td>10 μl</td>
 +
        <td>1X</td>
 +
      </tr>
 +
      <tr>
 +
        <td>5x Q-Solution</td>
 +
        <td>10 µl</td>
 +
        <td>1x</td>
 +
      </tr>
 +
      <tr>
 +
        <td>10 µM Forward Primer</td>
 +
        <td>5 µl</td>
 +
        <td>1 µM</td>
 +
      </tr>
 +
      <tr>
 +
        <td>10 µM Reverse Primer</td>
 +
        <td>5 µl</td>
 +
        <td>1 µM)</td>
 +
      </tr>
 +
      <tr>
 +
        <td>Template DNA</td>
 +
        <td>variable</td>
 +
        <td>0.1-50 ng</td>
 +
      </tr>
 +
      <tr>
 +
        <td>Hot Star HiFidelity DNA Polymerase</td>
 +
        <td>1 µl for <2k fragments,    2 µl for 2-5 kb</td>
 +
        <td>2,5 units, 5 units</td>
 +
      </tr>
 +
      <tr>
 +
        <td>Nuclease-free water</td>
 +
        <td>to 50 µl</td>
 +
        <td>-</td>
 +
      </tr>
 +
      </table>
 +
    </li>
 +
    </li>
 +
  <li>PCR cycler conditions</li>
 +
  <li>
 +
    <table style="width:100%">
 +
    <tr>
 +
      <th>Step</th>
 +
      <th>Temperature</th>
 +
      <th>Time</th>
 +
    </tr>
 +
    <tr>
 +
      <td>Initial Denaturation</td>
 +
      <td>95°C</td>
 +
      <td>5 min</td>
 +
    </tr>
 +
    <tr>
 +
      <td>30 cycles</td>
 +
      <td>94°C</td>
 +
      <td>15 sec</td>
 +
    </tr>
 +
    <tr>
 +
      <td>30 cycles</td>
 +
      <td>50°C-68°C (extract 5°C from typical Tm)</td>
 +
      <td>1 min</td>
 +
    </tr>
 +
    <tr>
 +
      <td>30 cycles</td>
 +
      <td>72°C for <2kb, 68°C for 2-5 kb</td>
 +
      <td>1 min/kb,  2 min/kb</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Final extension</td>
 +
      <td>72°C</td>
 +
      <td>10 min</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Hold</td>
 +
      <td>4-10°C</td>
 +
      <td>-</td>
 +
    </tr>
 +
    </table>
 +
  </li>
 +
  <li>Source
 +
    <ol type=i>
 +
    <li><a href="https://www.qiagen.com/us/resources/download.aspx?id=4ae801b5-9be2-411a-8551-ca7f758d2dcd&lang=en">Qiagen</a></li>
 +
    </ol>
 +
  </li>
 +
  </ol>
 +
</li>
 +
</li>
 +
</ol>
 +
<br>
  
<img class="imglab" src="https://static.igem.org/mediawiki/2017/e/ec/HCas9-pSB1A3_History.jpg" style="margin-left:10%; width:90%;" alt="hCas9 pSB1A3 construction.">
+
<li id="snav11"><b>Phusion PCR</b>
 
+
  <ol type=a >
   <h5 class="left">Validation construction</h5>
+
  <li>Materials according to table</li>
As mentioned earlier we were not able to construct the biobrick compatible hCas9 operon. So the experiment that will be described next was not executed. To validate that hCas9 is capable of acquiring spacers in both <i>L. lactis</i> and <i>E.coli</i>, we wanted to perform an on-plate acquisition assay. In this assay we would have measured the rate at which spacers would be acquired. For this assay we first would have inserted the hCas9 operon into an inducible expression vector. We were planning to use an arabinose inducible pBad vector for <i>E. coli</i> and a nisin inducible pNZ8048 vector for <i>L. lactis</i>.
+
  <li>Procedure
For comparison we would also have included the regular Cas9 operon. The cells would then be exposed to bacteriophages and the surviving colonies isolated. Using PCR we could then have measured the increase in size of the spacer array. The amount of surviving colonies and the sizes of the spacer arrays would have given an indication about the efficiency/activity of the hCas9 operon in <i>L. lactis</i> and <i>E.coli</i>.
+
    <table style="width:100%">
  </ul>
+
    <tr>
<hr>
+
      <th>Component</th>
 +
      <th>20 μl reaction</th>
 +
      <th>50 μl reaction</th>
 +
      <th>Final Concentration</th>
 +
    </tr>
 +
    <tr>
 +
      <td>5X Phusion HF/ GC Buffer</td>
 +
      <td>4 μl</td>
 +
      <td>10 μl</td>
 +
      <td>1X</td>
 +
    </tr>
 +
    <tr>
 +
      <td>10 mM dNTPs</td>
 +
      <td>0.4 µl</td>
 +
      <td>1 μl</td>
 +
      <td>200 µM</td>
 +
    </tr>
 +
    <tr>
 +
      <td>10 µM Forward Primer</td>
 +
      <td>1 µl</td>
 +
      <td>2,5 μl</td>
 +
      <td>0.5 µM (0.05–1 µM)</td>
 +
    </tr>
 +
    <tr>
 +
      <td>10 µM Reverse Primer</td>
 +
      <td>1 µl</td>
 +
      <td>2,5 μl</td>
 +
      <td>0.5 µM (0.05–1 µM)</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Template DNA</td>
 +
      <td>variable</td>
 +
      <td>variable</td>
 +
      <td><250 ng</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Phusion DNA Polymerase</td>
 +
      <td>0.2 µl</td>
 +
      <td>0.5 µl</td>
 +
      <td>1. units/50 µl PCR</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Nuclease-free water</td>
 +
      <td>to 20 µl</td>
 +
      <td>to 50 µl</td>
 +
      <td>-</td>
 +
    </tr>
 +
    </table>
 +
  </li>
 +
  <li>PCR cycler conditions</li>
 +
  <li>
 +
    <table style="width:100%">
 +
    <tr>
 +
      <th>Step</th>
 +
      <th>Temperature</th>
 +
      <th>Time</th>
 +
    </tr>
 +
    <tr>
 +
      <td>Initial Denaturation</td>
 +
      <td>98°C</td>
 +
      <td>30 sec</td>
 +
    </tr>
 +
    <tr>
 +
      <td>30 cycles</td>
 +
      <td>98°C</td>
 +
      <td>5-10 sec</td>
 +
    </tr>
 +
    <tr>
 +
      <td>30 cycles</td>
 +
      <td>45°C-72°C</td>
 +
      <td>10-30 sec</td>
 +
    </tr>
 +
    <tr>
 +
      <td>30 cycles</td>
 +
      <td>72°C</td>
 +
      <td>15-30 sec/ kb</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Final extension</td>
 +
      <td>72°C</td>
 +
      <td>5-10 min</td>
 +
    </tr>
 +
    <tr>
 +
      <td>Hold</td>
 +
      <td>4-10°C</td>
 +
      <td>-</td>
 +
    </tr>
 +
    </table>
 +
  </li>
 +
  <li>Source
 +
    <ol type=i>
 +
    <li><a href="https://www.neb.com/protocols/1/01/01/pcr-protocol-m0530">NEB</a></li>
 +
    </ol>
 +
  </li>
 +
   </ol>
 +
</li>
 +
<br>
 +
<li id="snav12"><b>PCR cleanup</b></li>
 +
  <ol type=a>
 +
  <li>Materials
 +
    <ol type=i>
 +
    <li>QIAquick PCR Purification Kit</li>
 +
    <li>Eppendorf tubes</li>
 +
    <li>Eppendorf centrifuge</li>
 +
    </ol>
 +
  </li>
 +
  <li>Procedure
 +
    <ol type=i>
 +
    <li>Add 5 volumes Buffer PB to 1 volume of the PCR reaction ad mix. If the color of the mixture is orange or volet, add 10 µl 3 M sodium acetate, pH 5.0, and mix. The color of the mixture will turn yellow</li>
 +
    <li>Place a QIAquick column in a provided 2 ml collection tube</li>
 +
    <li>To bind DNA, apply the sample to the QIAquick column and centrifuge for 30-60 s. Discard the flow-through and place the QIAquick column back in the same tube</li>
 +
    <li>To wash, add 0.75 ml of Buffer PE to the QIAquick column and centrifuge for 30-60 s. Discard flow-through and place the QIAquick column back in the same tube</li>
 +
    <li>Centrigue the QIAquick column once more in the provided 2 ml colletion tube for 1 min to remove residual wash buffer</li>
 +
    <li>Place each QIAquick column in a clean Eppendorf tube</li>
 +
    <li>To elute DNA, add 50 µl Buffer EB (10 mM Tris-Hcl, pH 8.5) or water (pH 7.0-8.5) to the center of the QIAquick membrane and centrifuge the column for 1 min. For increased DNA concentration, add 30 µl elution buffer to the center of the QIAquick membrane, let the column stand for 1 min, and then centrifuge</li>  
 +
    <li>If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 5 volumes of purified DNA. Mix the solution by pipetting up and down before loading the gel.</li>
 +
    </ol>
 +
  </li>
 +
  <li>Source
 +
    <ol type=i>
 +
    <li><a href="https://www.qiagen.com/us/resources/download.aspx?id=390a728a-e6fc-43f7-bf59-b12091cc4380&lang=en">Qiagen</a></li>
 +
    </ol>
 +
  </li>
 +
  </ol>
 +
</li>
 +
<br>
 +
<br>
 +
<li id="snav13"><b>Gel extraction</b></li>
 +
  <ol type=a>
 +
  <li>Materials
 +
    <ol type=i>
 +
    <li>QIAquick Gel Extraction Kit</li>
 +
    <li>50°C water bath</li>
 +
    <li>Eppendorf tubes</li>
 +
    <li>Eppendorf centrifuge</li>
 +
    </ol>
 +
  </li>
 +
  <li>Procedure
 +
    <ol type=i>
 +
    <li>Excise the DNA fragment from the agarose gel with a clean, sharp scalpel</li>
 +
    <li>Weigh te gel slice in a colorless tube. Add 3 volumes Buffer QG to 1 volume gel (100 mg ~ 100 µl). The maxiumum amount of gel per spin column is 400 mg. For >2% agarose gels, add 6 volumes Vuffer QG</li>
 +
    <li>Incubate at 50°C for 10 min (or until the gel slice has completely dissolved). Vortex the
 +
tube every 2–3 min to help dissolve gel. After the gel slice has dissolved completely, check that the color of the mixture is yellow (similar to Buffer QG without dissolved agarose). If the color of the mixture is orange or violet, add 10 µl 3 M sodium acetate, pH 5.0, and mix. The mixture turns yellow</li>
 +
    <li>Add 1 gel volume isopropanol to the sample and mix</li>
 +
    <li>Place a QIAquick spin column in a provided 2 ml collection tube. To bind DNA, apply the sample to the QIAquick column and centrifuge for 1 min until all the samples have passed through the column. Discard flow-through and place the QIAquick column back into the same tube. For sample volumes of >80 µl, load and spin again</li>
 +
    <li>To wash, add 750 µl Buffer PE to QIAquick column and centrifuge for 1 min. Discard flow-through and place the QIAquick column back into the same tube. Note: If the DNA will be used for salt-sensitive applications (e.g., sequencing, bluntended ligation), let the column stand 2–5 min after addition of Buffer PE. Centrifuge the QIAquick column in the provided 2 ml collection tube for 1 min to remove residual wash buffer. </li>
 +
    <li>Place QIAquick column into a clean 1.5 ml microcentrifuge tube</li>
 +
    <li>To elute DNA, add 50 µl Buffer EB (10 mM Tris-Hcl, pH 8.5) or water (pH 7.0-8.5) to the center of the QIAquick membrane and centrifuge the column for 1 min. For increased DNA concentration, add 30 µl elution buffer to the center of the QIAquick membrane, let the column stand for 1 min, and then centrifuge</li>
 +
    <li>If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 5 volumes of purified DNA. Mix the solution by pipetting up and down before loading the gel</li>
 +
    </ol>
 +
  </li>
 +
  <li>Source
 +
    <ol type=i>
 +
    <li><a href="https://www.qiagen.com/us/resources/download.aspx?id=f4ba2d24-8218-452c-ad6f-1b6f43194425&lang=en">Qiagen</a></li>
 +
    </ol>
 +
  </li>
 +
  </ol>
 +
</li>
 +
<br>
 +
<br>
 +
<li id="snav14"><b>Plasmid isolation</b></li>
 +
  <ol type=a>
 +
  <li>Materials
 +
    <ol type=i>
 +
    <li>QIAprep Spin Miniprep Kit</li>
 +
    <li>Eppendorf tubes</li>
 +
    <li>Eppendorf centrifuge</li>
 +
    </ol>
 +
  </li>
 +
  <li>Procedure
 +
    <ol type=i>
 +
    <li>Pellet 1–5 ml bacterial overnight culture by centrifugation at >8000 rpm (6800 x g) for 3 min at room temperature (15–25°C).</li>
 +
    <li>Resuspend pelleted bacterial cells in 250 μl Buffer P1 and transfer to a microcentrifuge tube. </li>
 +
    <li>Add 250 μl Buffer P2 and mix thoroughly by inverting the tube 4–6 times until the solution becomes clear. Do not allow the lysis reaction to proceed for more than 5 min. If using LyseBlue reagent, the solution will turn blue. </li>
 +
    <li>Add 350 μl Buffer N3 and mix immediately and thoroughly by inverting the tube 4–6 times. If using LyseBlue reagent, the solution will turn colorless. </li>
 +
    <li>Centrifuge for 10 min at 13,000 rpm (~17,900 x g) in a table-top microcentrifuge. </li>
 +
    <li>Apply the supernatant from step 5 to the QIAprep spin column by decanting or pipetting. Centrifuge for 30–60 s and discard the flow-through.</li>
 +
    <li>Wash the QIAprep spin column by adding 0.75 ml Buffer PE. Centrifuge for 30–60 s and discard the flow-through. Transfer the QIAprep spin column to the collection tube.</li>
 +
    <li>Centrifuge for 1 min to remove residual wash buffer.</li>
 +
    <li>Place the QIAprep column in a clean 1.5 ml microcentrifuge tube. To elute DNA, add 50 μl Buffer EB (10 mM Tris·Cl, pH 8.5) or water to the center of the QIAprep spin column, let stand for 1 min, and centrifuge for 1 min.</li>
 +
    </ol>
 +
  </li>
 +
  <li>Source
 +
    <ol type=i>
 +
    <li><a href="https://www.qiagen.com/us/resources/download.aspx?id=331740ca-077f-4ddd-9e5a-2083f98eebd5&lang=en">Qiagen</a></li>
 +
    </ol>
 +
  </li>
 +
  </ol>
 +
</li>
 +
<br>
 +
<br>
 +
<li id="snav18"><b>Phenol-Chloroform DNA extraction</b></li>
 +
  <ol type=a>
 +
  <li>Materials
 +
    <ol type=i>
 +
    <li>Phenol:chloroform:isoamyl alchohol (25:24:1)</li>
 +
    <li>Mili-Q water</li>
 +
    <li>Eppendorf centrifuge</li>
 +
    <li>Chemical fume hood</li>
 +
    <li>Nitrile gloves</li>
 +
    <li>Eppendorf tubes</li>
 +
    <li>At least 100 μl sample (if you have 20 μl ligation, add 80 μl Mili-Q)</li>
 +
    <li>SpeedVac</li>
 +
    </ol>
 +
  </li>
 +
  <li>Procedure
 +
    <ol type=i>
 +
    <li>Warning: phenol can cause severe burns to the eyes and the skin. Chloroform is a volatile liquid that affects the central nervous system and a suspected human carcinogenic. It is very volatile and can cause damage by inhalation, skin and eyes absorption, and ingestion. Therefore, <b>perform the whole procedure in a chemical fume hood </b> and wear nitrile gloves (if accidental contact occurs, remove and discard contaminated gloves immediately)
 +
    <li>Add one volume of phenol:chloroform:isoamyl alcohol to the sample.</li>
 +
    <li>Vortex vigorously for 1 minute.</li>
 +
    <li>Spin at 10.000g for 5 minutes. (to separate organic and aqueous phases)</li>
 +
    <li>Place the top aqueous solution in a new eppendorf tube and discard the organic bottom phase. </li>
 +
    <li><b>Note:</b> Be careful do not pick up any of the phenol:chloroform:isoamyl alcohol phase.</li>
 +
    <li>Repeat the above steps two times.</li>
 +
    <li>Now, you can concentrate the DNA sample by using SpeedVac or ethanol precipitation.</li>
 +
    </ol>
 +
  </li>
 +
  <li>Source
 +
    <ol type=i>
 +
    <li>We received this protocol from our supervisor Patricia.</li>
 +
    </ol>
 +
  </li>
 +
  </ol>
 +
  </li>
 +
<br>
 
<br>
 
<br>
 
+
<li id="snav19"><b>Ethanol DNA precipitation</b></li>
<h4 id="snavdcas9" class="left">dCas9</h4>
+
   <ol type=a>
<ul>
+
  <li>Materials
   <h5 class="left">Biobrick construction</h5>
+
    <ol type=i>
For the next part for our project we created a biobrick compatible dCas9 protein that would recognize different PAM sites than hCas9. To achieve this we had to introduce the VRER mutations into the dCas9 gene,(Table) that were described by <a class="mouseover" title="Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).">[Kleinstiver (2015)]</a>.
+
    <li>100% cold ethanol</li>
We started out by trying to transform the dCas9 from the biobrick dCas9-Ω (<a href="http://parts.igem.org/BBa_K1723000">BBa_K1723000</a>), which was provided in the iGEM distribution plate, as a basis. However, we were not able to recover successful transformants. Therefore we decided to pursue another strategy utilizing the addgene plasmid pJWV102-PL-dCas9 (<a href="https://static.igem.org/mediawiki/2017/4/4b/PJWV102-PL-dCas9-sequence.pdf">plasmid map</a>), which was supplied to us by our supervisor Chenxi.
+
    <li>70% cold ethanol</li>
<br>
+
    <li>Eppendorf centrifuge</li>
<li>To start off the dCas9 was PCR amplified out of the plasmid using primers to incorporate XbaI as well as a PstI restriction sites in front of and behind dCas9, enabling dCas9 integration into an iGEM Vector.</li>
+
    <li>Sodium acetate (3M) (pH 5.2)</li>
<li>Next we removed the EcoRI site, since this was still present in the Addgene plasmid and interfering with Biobrick compatibility. In order to accomplish this,  two sets of quick-change primers were designed (image of sequence dCas9 plasmid part containing EcoRI site and all four primers). This created the regular dCas9, which can be seen as an improvement on (<a href="http://parts.igem.org/Part:BBa_K1026000">BBa_K1026000</a>).</li>
+
    <li>MiliQ water or elution buffer</li>
<li>Since all mutations are positioned at the end of the gene, a gBlock was designed containing the end of dCas9 with all four mutations.  To exchange the gblock with the original end of dCas9 the BamHI restriction site was used. The end of the gblock contained the biobrick suffix. To ensure that only mutated dCas9 would be transformed, the correct fragment was subjected to a gel-extraction after restriction of the pSB1C3 dCas9 plasmid.</li>
+
    <li>Eppendorf tubes</li>
From this sub-project both the biobrick-compatible dCas9 (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2361000">BBa_K23610000</a>) and dCas9-VRER (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2361001">BBa_K2361001</a>) were submitted to the iGEM HQ.
+
    <li>At least 100 μl sample (if you have 20 μl ligation, add 80 μl Mili-Q)</li>
</ul>
+
    <li>SpeedVac</li>
 
+
    <li><i>Optional: glycogen</i></li>
<ul>
+
    </ol>
  <h5 class="left">Validation</h5>
+
  </li>
To validate that dCas9 worked we designed an experiment in which we would be able to determine if dCas9 was capable of interfering with the expression of GFP. Since the spacer array and the tracerRNA are not on the same plasmid we used pre-designed guide RNA’s. The guide RNA’s were designed so they would bind in the coding sequence of GFP after a constitutive promoter. We did not only want to see if our dCas9 could interfere with gene expression, we also wanted to see if the VRER mutations would cause it to recognize a different PAM sequence. So half of the guideRNA’s had a PAM recognition sequence for dCas9 and the other half had the recognition sequence for dCas9VRER. This way we could compare the relative amount of GFP inhibition between the guide RNA’s and determine of the VRER mutations changed the recognition sequence for dCas9.
+
  <li>Procedure
</ul>
+
    <ol type=i>
<hr>
+
    <li>Add 0.1x volume of sodium acetate and mix (no vortex)</li>
 
+
    <li>Optional trick: add 1 μl of glycogen. Glycogen will co-precipate with the DNA and therefore, it will form a visible pellet and incease the recovery of DNA. It van be useful when you have small quantities of DNA.</li>
<h4 id="snavreport" class="left">Reporter</h4>
+
    <li>Add 2.5x volume of 100% cold ethanol and mix (no vortex).</li>
 
+
    <li>Incubate at -80 °C for at least 2 hours.</li>
The process of creating the dCas9 and tracRNA parts is described elsewhere and they could be used without further modification. The target array for the reporter plasmid and crRNA array were custom designed and synthesized for use in this sub-project.
+
    <li>Spin at top speed for 15 minutes at 4°C.</li>
<p>The cRNA array design was based on the natural <i>S. Pyogenes</i> CRISPR locus. The array was reduced down to a single spacer and the natural promoter was exchanged for the <i>lactis</i> pUsp45 promoter. Outward facing BsaI were inserted to allow the crRNA array to be easily reprogrammable by insertion of a short oligo. Furthermore, a termination sequence proven to work in <i>lactis</i> was placed after the putative <i>S. pyogenes</i> terminator and the whole was flanked by biobrick adapters. The whole was ordered for synthesis from IDT, see <a href="https://static.igem.org/mediawiki/2017/a/a1/Syn-crRNA-sequence.pdf">here</a>. We submitted the completed crArrays
+
    <li>Remove the supernatant carefully without touching the pellet.</li>
(<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2361004">BBa_K2361004</a>),
+
    <li>Spin for some seconds and remove again the excess of supernatant.</li>
empty (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2361007">BBa_K2361007</a>) with spacer 21
+
    <li>Wash by adding 150 μl of 70% cold ethanol by carefully sliding the ethanol along the wall of the tube.</li>  
(<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2361006">BBa_K2361006</a>)
+
    <li>Spin at top speed for 5 minutes at 4°C.</li>
and spacer 20 (<a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2361005">BBa_K2361005</a>)
+
    <li>Repeat the ethanol wash from step 8 twice.</li>
.</p>
+
    <li>Dry with SpeedVac.</li>
<p>The reporter was designed to use a fluorescent protein (sfGFP) that has <a href="http://parts.igem.org/Part:BBa_K1365020">been shown to</a> show robust expression in <i>lactis</i>. The sfGFP transcript is driven by the <i>lactis</i> p32 promoter and followed by two termination sequences. Because of the limited synthesis size available to us the reporter target array and sfGFP gene “unit” could not be ordered in its completed form. We shrunk our sequence by removing a chunk of the sfGFP sequence. We <a href="https://static.igem.org/mediawiki/2017/8/8a/SfGFP-regulatory-gBlock-sequence.pdf">designed</a> it such a manner that this created a new HindIII restriction site that would be lost upon insertion of the missing sequence. The missing sequence was amplified from an entry from the 2014 Groningen iGEM team (<a href="http://parts.igem.org/Part:BBa_K1365020">BBa_K1365020</a>). As with the crRNA array, the sfGFP reporter was flanked by a biobrick prefix and suffix.  
+
    <li>Resuspend in the appropriate volume of MiliQ water or elution buffer.</li>
We were able to insert the first sfGFP from the gblock into the PSB1C3 backbone</p>
+
    </ol>
<p>Between the transcription start site of p32, and the RBS and start codon of sfGFP two Cas9 target sequences had to be placed. These 20nt target sites, “20” and “21”, were predicted by our <a href="https://2017.igem.org/Team:Groningen/Model">bioinformatics approach</a> to be good contenders for uptake by the CRISPR operon and were created separately. They were flanked by a -NGCG- PAM to allow them to be recognized by the PAM targeting mutant dCas9VRER. Like the crRNA array, outward facing BsaI sites were added to allow the target sites to be exchanged with a short oligo. Unlike the BsaI sites in the crRNA these restriction sites in the reporter target array did not interfere with its intended function. Therefore, they could be left in for the initial test and called upon later if the target array needed to be exchanged. In the end we were able to construct the different CRISPR arrays with a pUsp45 promotor and 20, 21 or empty spacers. </p>
+
  </li>
 
+
  <li>Source
<img class="imglab" style="margin-left:10%; width:90%;" src="https://static.igem.org/mediawiki/2017/8/8b/SfGFPreporter.jpg" alt="SfGFP reporter construction.">
+
    <ol type=i>
 
+
    <li>We received this protocol from our supervisor Patricia.</li>
<img class="imglab" style="margin-left:10%; width:90%;" src="https://static.igem.org/mediawiki/2017/6/6e/PSB1C3_array_spacer_20-21-empty_History.jpg" alt="CRISPR arrays construction.">
+
    </ol>
 
+
  </li>
 
+
  </ol>
<h5 class="left">Validation</h5>
+
</li>
 
+
<br> 
<p> To experimentally validate this part, several of our other subprojects have to be completed as well. The spacer acquisition subproject has to incorporate the appropriate spacer (20/21), transcripe the crRNA together with the tracRNA which should allow the dCas9VRER to target the reporter plasmid which leads to a measurable decrease in GFP fluorescence. This experiment can be performed in a standard 96-well platereader which is able to measure GFP fluorescence, maintain the required temperature as well as measure the optical density at 600nm. Due to time concerns we were not able to perform this feat experimentally.</p>
+
<li id="snav16"><b>Antibiotic</b>
<hr>
+
  <ol type=a>
 
+
    <li><i>E. coli</i></li>
<h4 id="snavlactool" class="left">Lactis toolbox</h4>
+
    <ol type=i>  
 
+
      <li>Ampicillin: 100 μg/mL</li>
<h5 class="left">Biobrick construction</h5>
+
      <li>Chloramphenicol: 25 μg/mL</li>
As our detection system is designed to ultimately by integrated into <i>L. lactis</i>,  we wanted to provide the registry with the desired promoters which were not available in a pSB1C3 backbone. For each promoter, a different plasmid and primer pair was used to amplify the sequences from their native backbones. The pNisA promoter was amplified from the pNZ8048 plasmid using the G65 and G66 primers [2]. The p32 promoter was amplified from the pMG36E plasmid using the G67 and G68 primers[7]. The pUsp45 promoter was amplified from the already cloned part <a href="http://parts.igem.org/Part:BBa_K2361003">BBa_K2361003</a> using the G63 and G64 primers.
+
      <li>Tetracycline: 10 μg/mL</li>
This added the biobrick restriction sites combinations to the flanks of the promoter sequence. This allowed us to incorporate the promotor sequences into the biobrick-compatible format. In the end the sequencing data for p32 & pUsp45 did not match the expected sequence, so we resorted to only submitting (<a href="http://parts.igem.org/Part:BBa_K2361009">BBa_K2361009</a>) and testing PnisA activity.
+
    </ol>
<br>
+
    <li><i>L. lactis</i></li>
  <h5 class="left">Validation construction</h5>
+
    <ol type=i>
So how do we actually validate our promotor? Since iGEM requires biobrick submissions to be contained in the PSB1C3 vector, the first step was cloning the pNisA in the lactis expression vector (pNZ8048) together with an sfGFP molecule. This was then transformed into <i>Lactis</i>. Furthermore the promotor strength was classified by measuring GFP expression. For the inducible promotor PnisA we used several different Nisin concentrations to estimate the effect on expression strength. Since the sequencing data for p32 & push45 did not match the expected sequence we resorted to only testing PnisA activity. See the <a href="link">result page</a> for the results.
+
      <li>Chloramphenicol: 5 μg/mL</li>
 
+
      <li>Erythromycin: 1 μg/mL</li>
<h4 id="snavreffie" class="left">References</h4>
+
  </li>
<ol>
+
<li style="text-align: left">Heler, R. et al. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response. Mol. Cell 65, 168–175 (2017).</li>  
+
<li style="text-align: left">Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015)</li>  
+
  <li style="text-align: left">Cloning overviews were made with SpapGene software.</li>
+
 
</ol>
 
</ol>
 
+
<br>
<br>
+
 
+
 
<center>
 
<center>
<a class="button" style="text-decoration: none; color:white; margin-bottom:30px;" href="https://2017.igem.org/Team:Groningen/Results">Next: Results</a>
+
<a class="button" style="text-decoration: none; color:white; margin-bottom:30px;" href="https://2017.igem.org/Team:Groningen/InterLab">Next: InterLab</a>
</center>
+
  
</div> <!-- main col-->
+
</div> <!-- main-col -->
</div> <!-- marginsnav-->
+
</div> <!-- marginsnav -->
  
 
<div class="footer">
 
<div class="footer">
<img id="bannerimg" usemap="#imagemap_sponsors" style="width: 100%;" src="https://static.igem.org/mediawiki/2017/b/b5/Banner.jpg" alt="Sponsors">
+
<img id="bannerimg" usemap="#imagemap_sponsors" style="width: 100%; z-index:2001;" src="https://static.igem.org/mediawiki/2017/b/b5/Banner.jpg" alt="Sponsors">
 
</div>
 
</div>
  
 
</body>
 
</body>
 
+
<html>
<script>
+
//modal trigger
+
var modal = document.getElementById('myModal');
+
var images = document.getElementsByClassName("imglab");
+
for(var i = 0; i < images.length; i++){
+
    var img = images[i];
+
    var modalImg = document.getElementById("img01");
+
    var captionText = document.getElementById("caption");
+
    img.onclick = function(){
+
        modal.style.display = "block";
+
        modalImg.src = this.src;
+
        modalImg.alt = this.alt;
+
        captionText.innerHTML = this.alt;
+
    }
+
}
+
//Get click and close
+
modal.addEventListener('click',function(){
+
this.style.display="none";
+
})
+
 
+
//modal trigger
+
var modal = document.getElementById('myModal');
+
var images = document.getElementsByClassName("imglab");
+
for(var i = 0; i < images.length; i++){
+
    var img = images[i];
+
    var modalImg = document.getElementById("img01");
+
    var captionText = document.getElementById("caption");
+
    img.onclick = function(){
+
        modal.style.display = "block";
+
        modalImg.src = this.src;
+
        modalImg.alt = this.alt;
+
        captionText.innerHTML = this.alt;
+
    }
+
}
+
//Get click and close
+
modal.addEventListener('click',function(){
+
this.style.display="none";
+
})
+
//modal trigger
+
var modalh = document.getElementById('myModalh');
+
var imagesh = document.getElementsByClassName("imglabh");
+
for(var i = 0; i < imagesh.length; i++){
+
    var imgh = imagesh[i];
+
    var modalImgh = document.getElementById("img01h");
+
    var captionTexth = document.getElementById("captionh");
+
    imgh.onclick = function(){
+
        modalh.style.display = "block";
+
        modalImgh.src = this.src;
+
        modalImgh.alt = this.alt;
+
        captionTexth.innerHTML = this.alt;
+
    }
+
}
+
//Get click and close
+
modalh.addEventListener('click',function(){
+
this.style.display="none";
+
})
+
</script>
+
 
+
</html>
+

Revision as of 01:11, 2 November 2017


Protocols


  1. Restriction Digestion
    1. Materials
      1. (1) 8-tube strip, or (3) 0.6ml thin-walled tubes
      2. BioBrick Part in BioBrick plasmid (Purified DNA, > 16ng/μl)
      3. dH2O
      4. NEB Buffer 2
      5. BSA
      6. Restriction Enzymes: EcoRI, SpeI, XbaI, PstI
    2. Procedure
      1. Add 250ng of DNA to be digested, and adjust with dH20 for a total volume of 16 μl
      2. Add 2.5 μl of NEBuffer 2.1
      3. Check here for buffer selection (depending on the enzyme)
      4. Add 0.5 μl of BSA
      5. Add 0.5 μl of EcoRI
      6. Add 0.5 μl of PstI
      7. There should be a total volume of 20 μl. Mix well and spin down briefly
      8. Incubate the restriction digest at 37°C for 30 min
      9. If prevention of self-ligation of backbone is recommended: add 0.5 μl alkaline phosphatase and incubate for another 20 min 37°C.
      10. Incubate at 80°C for 20 min to heat kill the enzymes. We incubate in a thermal cycler with a heated lid
      11. Run a portion of the digest on a gel (8 μl, 100ng), to check that both plasmid backbone and part length are accurate.
    3. Source
      1. iGEM


  2. Ligation
    1. Materials
      1. Digested backbone & inserts
      2. T4 DNA ligase
      3. T4 DNA ligase buffer
    2. Procedure
      1. Add 2 μl of digested plasmid backbone (25 ng)
      2. Add equimolar amount of EcoRI-HF SpeI digested fragment (< 3 μl)
      3. Add equimolar amount of XbaI PstI digested fragment (< 3 μl)
      4. Molar ratios of 1:1, 1:10, 1:20 are recommended
      5. Add 1 μl T4 DNA ligase buffer. Note: Do not use quick ligase
      6. Add 0.5 μl T4 DNA ligase
      7. Add water to 10 μl
      8. Ligate 16C/30 min, heat kill 80C/20 min
      9. Transform with 1-2 μl of product
    3. Source
      1. iGEM

  3. Gibson assembly
    1. Materials
      1. Compatible Fragments
      2. Gibson Assembly Master Mix 2x
      3. Positive control (NEB)
    2. Procedure
      2-3 Fragment Assembly 4-6 Fragment Assembly Positive Control**
      Total Amount of Fragments 0.02–0.5 pmols* X μl 0.2–1 pmols* X μl 10 μl
      Gibson Assembly Master Mix (2X) 10 μl 10 μl 10 μl
      Deionized H2O 10-X μl 10-X μl 0
      Total Volume 20 μl*** 20 μl*** 20 μl
    3. Source
      1. NEB

  4. Preparing competent E. coli DH5α cells
    1. Materials
      1. Plate or stock of E.coli DH5α cell
      2. LB
      3. TSS buffer
      4. Ice
    2. Procedure
      1. Grow 5ml overnight culture of cells in LB media, dilute this culture back into 25-50ml of fresh LB media in a 200ml conical flask.
      2. In the morning You should aim to dilute the overnight culture by at least 1/100.
      3. Grow the diluted culture to an OD600 of 0.2 - 0.5. (You will get a very small pellet if you grow 25ml to OD600 0.2)
      4. Put Eppendorf tubes on ice now so that they are cold when cells are aliquoted into them later. If your culture is X ml, you will need X tubes. At this point you should also make sure that your TSS is being cooled (it should be stored at 4°C but if you have just made it fresh then put it in an ice bath).
      5. Split the culture into two 50ml falcon tubes and incubate on ice for 10 min.
      6. All subsequent steps should be carried out at 4°C and the cells should be kept on ice whenever possible.
      7. Centrifuge for 10 minutes at 3000 rpm and 4°C.
      8. Decant supernatant, remove leftover media by carefully pipetting
      9. Resuspend in TSS buffer (10% of original volume), vortex gently
      10. Add 100 μl aliquots to chilled Eppendorfs, flash freeze and store at – 80°C in 200 µl aliquots.
    3. Source
      1. Openwetware

  5. Making competent Lactococcus L. lactis NZ9000 cells
    1. Materials
      1. M17
      2. GM17
      3. SGM17 + glycine
      4. Electroporation buffer
    2. Procedure
      1. Grow cells overnight in 25ml of GM17
      2. Add 1ml of overnight culture into 25ml SGM17 + glycine
      3. Grow for ~4 hours until OD600 ~ 0.7
      4. Chill culture on ice for 10 mins
      5. Centrifuge cells for 15 mins at 3000g
      6. Gently shake to resuspend pellet in 3ml Electroporation Buffer
      7. Centrifuge cells for 15 mins at 3000g
      8. Resuspend pellet in 3ml Electroporation Buffer
      9. Centrifuge cells for 15 mins at 3000g
      10. Resuspend pellet in 500 µl Electroporation Buffer
      11. Separate into 100 µl aliquots and store at -80°C until use.
    3. Source
      1. Openwetware

  6. Transformation E.coli DH5α
    1. Materials
      1. Plasmid DNA
      2. Competent E. coli DH5α cells: 50 µl per transformation
      3. 2x SOC stock
      4. SOC salt stocks
      5. Sterile MQ
      6. LB agar selection plates: Two per transformation
      7. Eppendorf tubes
      8. Floater
      9. Ice
      10. 42°C water bath
      11. 37°C incubator: both shaker and stove
      12. Sterile spreader/glass beads
    2. Procedure (on ice)
      1. Thaw competent cells on ice. When using multiple aliquots, first pool all cells into a single volume to homonogize the solution. Dispose of unused competent cells. Do not refreeze since reusing thawed cells, will drastically reduce transformation efficiency.
      2. Pipet 50 µl of competent cells into Eppendorf tube for each transformation (labeled, prechilled, in floating rack), don’t forget control tubes
      3. Pipet 1-100 ng of DNA as well as control into tubes and gently mix with tip
      4. incubate on ice for 30 min, tubes may be gently flicked, return to ice ASAP
      5. Meanwhile, for every transformation, add 2 µl of each SOC salt solution into 100 µl 2x SOC stock and ad to 200 µl with sterile MQ. Place the SOC medium on ice till use
      6. Heat shock tubes at 42°C for 30 seconds (precisely)
      7. Incubate on ice for 5 min
      8. Add 200 µl of SOC medium to each transformation
      9. Incubate at 37°C for 1 hours, shaker or rotor recommended
      10. Pipet 20 µl & 200 µl transformation mixture onto petri plates and spread with sterilized spreader or glass beads. Let the plates dry near the flame before placing them in the incubator
      11. Incubate plates upside down overnight (14-18hr) at 37°C
      12. Pick single colonies
      13. Perform Colony PCR to verify
      14. Grow cells & miniprep
      15. Calculate efficiency by counting colonies (expected value: 1.5x10^8 to 6x10^8 cfu/µg DNA)
    3. Source
      1. iGEM

  7. Electrotransformation L. Lactis
    1. Materials
      1. Plasmid DNA (preferably without salts from buffers. These can be removed by incubating the DNA on a filter, which is floating on MQ for 10 minutes at room temperature
      2. Electrocompetent L. lactis cells: 50 µl per transformation
      3. Recovery medium
      4. Electroporation Cuvettes
      5. Electroporator
      6. SGM17 agar selection plates
      7. Eppendorf tubes
      8. Ice
      9. Eppendorf centrifuge
      10. 30°C incubator
      11. Sterile spreader/glass beads
    2. Procedure
      1. Mix all elements of the recovery medium (1 ml per transformation) and place it on ice together with the electroporation cuvettes
      2. Thaw competent cells on ice. When using multiple aliquots, first pool all cells into a single volume to homonogize the solution. Dispose of unused competent cells. Do not refreeze since reusing thawed cells, will drastically reduce transformation efficiency.
      3. Pipet 50 µl of competent cells into Eppendorf tube for each transformation (labeled, prechilled, in floating rack), don’t forget control tubes
      4. Add at most 5 µl of plasmid DNA to the competent cells and incubate on ice for 10 minutes
      5. Dry the cuvette, electroporate at 2500 V and carefully add 950 µl recovery medium to the cells. Place the cuvette back on ice and incubate for 10 minutes
      6. Transfer the cell suspension with careful mixing into Eppendorf tubes and incubate for 2 hours at 30°C
      7. Plate 100 µl of the recovered cells onto a selection plate and spin down the remaining cells at 6000 rpm for 5 minutes
      8. Resuspend cell pellet into 50-100 µl and plate on a selection plate
      9. Incubate the plates at 30°C for 24 - 48 hours
    3. Source
      1. Openwetware

  8. Colony PCR
    1. Materials
      1. 10X Standard Taq Reaction Buffer
      2. 10 mM dNTPs
      3. 10 µM Forward Primer
      4. 10 µM Reverse Primer
      5. Template DNA (colony resuspended in MQ / plasmid DNA)
      6. Taq DNA Polymerase
      7. Nuclease-free water
      8. PCR tubes
      9. Ice
      10. PCR tube rack
    2. Procedure
      1. Suspend a colony in 10 µl sterile MQ
      2. Prepare Mastermix for 10 reactions according to:
        Component 220 µl = 10 colonies Final Concentration
        10X Standard Taq (Mg-free) Reaction Buffer 22 µl 1X
        25 mM MgCl2 13,2 µl 1.5 mM
        10 mM dNTPs 4,4 µl 200 µM
        10 µM pJET fw 4,4 µl 0.2 µM (0.05–1 µM, typically 0.1-0.5µM)
        10 µM pJET rv 4,4 µl 0.2 µM (0.05–1 µM, typically 0.1-0.5µM)
        Taq DNA Polymerase 1,1 µl 1.25 units/50 µl PCR
        Nuclease-free water 148,5 µl -
      3. Put 19 µl of mastermix in each reaction tube & add 2 µl suspended colony mixture
      4. Add 2 µl plasmid DNA for positive control and 2 µl MQ for the negative control
      5. Place the tubes in the PCR machine (Taq program)
      6. Once the PCR is done, mix 10 µl of PCR product with 2 µl 6X purple gel loading dye and run it on a gel for 50 minutes at 130 Volts
      7. If the correct products are present in the gel samples, inoculate overnight cultures from the original plates.
      8. Mix 5 ml LB with appropriate antibiotic. Scoop a colony from the plate and drop the tip into the medium. Incubate the tube at 37°C overnight to let the culture grow
    3. Source
      1. Qiagen

  9. Taq PCR
    1. Materials according to table
    2. Procedure
      1. Mix according to table
        Component 25 μl reaction 50 μl reaction Final Concentration
        10X Standard Taq Reaction Buffer 2.5 μl 5 μ 1X
        10 mM dNTPs 0.5 µl 1 μl 200 µM
        10 µM Forward Primer 0.5 µl 1 μl 0.2 µM (0.05–1 µM)
        10 µM Reverse Primer 0.5 µl 1 μl 0.2 µM (0.05–1 µM)
        Template DNA variable variable 1,000 ng
        Taq DNA Polymerase 0.125 µl 0.25 µl 1.25 units/50 µl PCR
        Nuclease-free water to 25 µl to 50 µl -
      2. PCR cycler conditions
        Step Temperature Time
        Initial Denaturation 95°C 30 sec
        30 cycles 95°C 15-30 sec
        30 cycles 45°C-68°C 15-60 sec
        30 cycles 68°C 1 min/ kb
        Final extension 68°C 5 min
        Hold 4-10°C -
    3. Source
      1. NEB

  10. HotStar HiFidelity PCR
    1. Materials according to table
    2. Procedure
      1. Mix according to table
        Component Volume/reaction products Final Concentration
        5x HotStar HiFidelity PCR Buffer (contains dNTPs) 10 μl 1X
        5x Q-Solution 10 µl 1x
        10 µM Forward Primer 5 µl 1 µM
        10 µM Reverse Primer 5 µl 1 µM)
        Template DNA variable 0.1-50 ng
        Hot Star HiFidelity DNA Polymerase 1 µl for <2k fragments, 2 µl for 2-5 kb 2,5 units, 5 units
        Nuclease-free water to 50 µl -
      2. PCR cycler conditions
      3. Step Temperature Time
        Initial Denaturation 95°C 5 min
        30 cycles 94°C 15 sec
        30 cycles 50°C-68°C (extract 5°C from typical Tm) 1 min
        30 cycles 72°C for <2kb, 68°C for 2-5 kb 1 min/kb, 2 min/kb
        Final extension 72°C 10 min
        Hold 4-10°C -
      4. Source
        1. Qiagen

  11. Phusion PCR
    1. Materials according to table
    2. Procedure
      Component 20 μl reaction 50 μl reaction Final Concentration
      5X Phusion HF/ GC Buffer 4 μl 10 μl 1X
      10 mM dNTPs 0.4 µl 1 μl 200 µM
      10 µM Forward Primer 1 µl 2,5 μl 0.5 µM (0.05–1 µM)
      10 µM Reverse Primer 1 µl 2,5 μl 0.5 µM (0.05–1 µM)
      Template DNA variable variable <250 ng
      Phusion DNA Polymerase 0.2 µl 0.5 µl 1. units/50 µl PCR
      Nuclease-free water to 20 µl to 50 µl -
    3. PCR cycler conditions
    4. Step Temperature Time
      Initial Denaturation 98°C 30 sec
      30 cycles 98°C 5-10 sec
      30 cycles 45°C-72°C 10-30 sec
      30 cycles 72°C 15-30 sec/ kb
      Final extension 72°C 5-10 min
      Hold 4-10°C -
    5. Source
      1. NEB

  12. PCR cleanup
    1. Materials
      1. QIAquick PCR Purification Kit
      2. Eppendorf tubes
      3. Eppendorf centrifuge
    2. Procedure
      1. Add 5 volumes Buffer PB to 1 volume of the PCR reaction ad mix. If the color of the mixture is orange or volet, add 10 µl 3 M sodium acetate, pH 5.0, and mix. The color of the mixture will turn yellow
      2. Place a QIAquick column in a provided 2 ml collection tube
      3. To bind DNA, apply the sample to the QIAquick column and centrifuge for 30-60 s. Discard the flow-through and place the QIAquick column back in the same tube
      4. To wash, add 0.75 ml of Buffer PE to the QIAquick column and centrifuge for 30-60 s. Discard flow-through and place the QIAquick column back in the same tube
      5. Centrigue the QIAquick column once more in the provided 2 ml colletion tube for 1 min to remove residual wash buffer
      6. Place each QIAquick column in a clean Eppendorf tube
      7. To elute DNA, add 50 µl Buffer EB (10 mM Tris-Hcl, pH 8.5) or water (pH 7.0-8.5) to the center of the QIAquick membrane and centrifuge the column for 1 min. For increased DNA concentration, add 30 µl elution buffer to the center of the QIAquick membrane, let the column stand for 1 min, and then centrifuge
      8. If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 5 volumes of purified DNA. Mix the solution by pipetting up and down before loading the gel.
    3. Source
      1. Qiagen


  13. Gel extraction
    1. Materials
      1. QIAquick Gel Extraction Kit
      2. 50°C water bath
      3. Eppendorf tubes
      4. Eppendorf centrifuge
    2. Procedure
      1. Excise the DNA fragment from the agarose gel with a clean, sharp scalpel
      2. Weigh te gel slice in a colorless tube. Add 3 volumes Buffer QG to 1 volume gel (100 mg ~ 100 µl). The maxiumum amount of gel per spin column is 400 mg. For >2% agarose gels, add 6 volumes Vuffer QG
      3. Incubate at 50°C for 10 min (or until the gel slice has completely dissolved). Vortex the tube every 2–3 min to help dissolve gel. After the gel slice has dissolved completely, check that the color of the mixture is yellow (similar to Buffer QG without dissolved agarose). If the color of the mixture is orange or violet, add 10 µl 3 M sodium acetate, pH 5.0, and mix. The mixture turns yellow
      4. Add 1 gel volume isopropanol to the sample and mix
      5. Place a QIAquick spin column in a provided 2 ml collection tube. To bind DNA, apply the sample to the QIAquick column and centrifuge for 1 min until all the samples have passed through the column. Discard flow-through and place the QIAquick column back into the same tube. For sample volumes of >80 µl, load and spin again
      6. To wash, add 750 µl Buffer PE to QIAquick column and centrifuge for 1 min. Discard flow-through and place the QIAquick column back into the same tube. Note: If the DNA will be used for salt-sensitive applications (e.g., sequencing, bluntended ligation), let the column stand 2–5 min after addition of Buffer PE. Centrifuge the QIAquick column in the provided 2 ml collection tube for 1 min to remove residual wash buffer.
      7. Place QIAquick column into a clean 1.5 ml microcentrifuge tube
      8. To elute DNA, add 50 µl Buffer EB (10 mM Tris-Hcl, pH 8.5) or water (pH 7.0-8.5) to the center of the QIAquick membrane and centrifuge the column for 1 min. For increased DNA concentration, add 30 µl elution buffer to the center of the QIAquick membrane, let the column stand for 1 min, and then centrifuge
      9. If the purified DNA is to be analyzed on a gel, add 1 volume of Loading Dye to 5 volumes of purified DNA. Mix the solution by pipetting up and down before loading the gel
    3. Source
      1. Qiagen


  14. Plasmid isolation
    1. Materials
      1. QIAprep Spin Miniprep Kit
      2. Eppendorf tubes
      3. Eppendorf centrifuge
    2. Procedure
      1. Pellet 1–5 ml bacterial overnight culture by centrifugation at >8000 rpm (6800 x g) for 3 min at room temperature (15–25°C).
      2. Resuspend pelleted bacterial cells in 250 μl Buffer P1 and transfer to a microcentrifuge tube.
      3. Add 250 μl Buffer P2 and mix thoroughly by inverting the tube 4–6 times until the solution becomes clear. Do not allow the lysis reaction to proceed for more than 5 min. If using LyseBlue reagent, the solution will turn blue.
      4. Add 350 μl Buffer N3 and mix immediately and thoroughly by inverting the tube 4–6 times. If using LyseBlue reagent, the solution will turn colorless.
      5. Centrifuge for 10 min at 13,000 rpm (~17,900 x g) in a table-top microcentrifuge.
      6. Apply the supernatant from step 5 to the QIAprep spin column by decanting or pipetting. Centrifuge for 30–60 s and discard the flow-through.
      7. Wash the QIAprep spin column by adding 0.75 ml Buffer PE. Centrifuge for 30–60 s and discard the flow-through. Transfer the QIAprep spin column to the collection tube.
      8. Centrifuge for 1 min to remove residual wash buffer.
      9. Place the QIAprep column in a clean 1.5 ml microcentrifuge tube. To elute DNA, add 50 μl Buffer EB (10 mM Tris·Cl, pH 8.5) or water to the center of the QIAprep spin column, let stand for 1 min, and centrifuge for 1 min.
    3. Source
      1. Qiagen


  15. Phenol-Chloroform DNA extraction
    1. Materials
      1. Phenol:chloroform:isoamyl alchohol (25:24:1)
      2. Mili-Q water
      3. Eppendorf centrifuge
      4. Chemical fume hood
      5. Nitrile gloves
      6. Eppendorf tubes
      7. At least 100 μl sample (if you have 20 μl ligation, add 80 μl Mili-Q)
      8. SpeedVac
    2. Procedure
      1. Warning: phenol can cause severe burns to the eyes and the skin. Chloroform is a volatile liquid that affects the central nervous system and a suspected human carcinogenic. It is very volatile and can cause damage by inhalation, skin and eyes absorption, and ingestion. Therefore, perform the whole procedure in a chemical fume hood and wear nitrile gloves (if accidental contact occurs, remove and discard contaminated gloves immediately)
      2. Add one volume of phenol:chloroform:isoamyl alcohol to the sample.
      3. Vortex vigorously for 1 minute.
      4. Spin at 10.000g for 5 minutes. (to separate organic and aqueous phases)
      5. Place the top aqueous solution in a new eppendorf tube and discard the organic bottom phase.
      6. Note: Be careful do not pick up any of the phenol:chloroform:isoamyl alcohol phase.
      7. Repeat the above steps two times.
      8. Now, you can concentrate the DNA sample by using SpeedVac or ethanol precipitation.
    3. Source
      1. We received this protocol from our supervisor Patricia.


  16. Ethanol DNA precipitation
    1. Materials
      1. 100% cold ethanol
      2. 70% cold ethanol
      3. Eppendorf centrifuge
      4. Sodium acetate (3M) (pH 5.2)
      5. MiliQ water or elution buffer
      6. Eppendorf tubes
      7. At least 100 μl sample (if you have 20 μl ligation, add 80 μl Mili-Q)
      8. SpeedVac
      9. Optional: glycogen
    2. Procedure
      1. Add 0.1x volume of sodium acetate and mix (no vortex)
      2. Optional trick: add 1 μl of glycogen. Glycogen will co-precipate with the DNA and therefore, it will form a visible pellet and incease the recovery of DNA. It van be useful when you have small quantities of DNA.
      3. Add 2.5x volume of 100% cold ethanol and mix (no vortex).
      4. Incubate at -80 °C for at least 2 hours.
      5. Spin at top speed for 15 minutes at 4°C.
      6. Remove the supernatant carefully without touching the pellet.
      7. Spin for some seconds and remove again the excess of supernatant.
      8. Wash by adding 150 μl of 70% cold ethanol by carefully sliding the ethanol along the wall of the tube.
      9. Spin at top speed for 5 minutes at 4°C.
      10. Repeat the ethanol wash from step 8 twice.
      11. Dry with SpeedVac.
      12. Resuspend in the appropriate volume of MiliQ water or elution buffer.
    3. Source
      1. We received this protocol from our supervisor Patricia.

  17. Antibiotic
    1. E. coli
      1. Ampicillin: 100 μg/mL
      2. Chloramphenicol: 25 μg/mL
      3. Tetracycline: 10 μg/mL
    2. L. lactis
      1. Chloramphenicol: 5 μg/mL
      2. Erythromycin: 1 μg/mL

      Next: InterLab