Results
- In the end we were able to validate three of our parts:
- dCas9 BBa_K2361000
- dCas9VRER BBa_K2361001
- pNisA promoter BBa_K2361009.
- We submitted sequence verified pUSP45 tracrRNA BBa_K2361003
- a CRISPR array BBa_K2361004
- a CRISPR array containing a 20 spacer BBa_K2361005
- a CRISPR array containing a 21 spacer BBa_K2361006
- a CRISPR array containing empty spacers BBa_K2361007 without furher experimental validation
- Unfortunately, sequencing revealed unsuccessful incorporation of the insert during the biobrick construction of two of our parts: p32 BBa_K2361008 and pUsp45 BBa_K2361010.
- Unfortunately, sequencing revealed that the one of the fragments in the CRISPR operon was replaced with something of approximately the same size. Therefore we were not able to submit our hCas9 part BBa_K2361002.
dCas9
Construction
For this part we started by making a biobrick compatible version of dCas9 called pSB1C3:dCas9QC. This part was also used for the construction of dCas9VRER. The full length of this part was sequenced (figure 2) and the results confirmed that the sequence was correct. In the notebook (week 18-09) a gel is shown from which it can be seen that the EcoRI site was successfully removed from our dCas9 part.
Although the pSB1C3:dCas9QC is already in the pSB1C3 backbone and contains all the correct restriction sites, it does not contained the suffix. To fix this we restricted the pSB1C3dCas9 with EcoRI and SpeI and ligated it into pSB1C3, which was linearized with primers G69 and G70 (see notebook) and restricted with the same enzymes. In the gel on the top right, lane 2 & 3 correspond to the isolated plasmid restricted with respectively EcorI and a combination of EcorI and PstI. The sizes correspond to the linearized (6,2 kb) and the separate backbone (2 kb) and dCas9 part (4,2 kb).
Since the chances of mutations in restriction-ligation cloning are negligible we did not fully sequence the part again. We did use pJet_Fwd and pJet-Rev to be absolutely certain that the correct part was cloned into the backbone. These results are shown in figure 3.
This part is considered as an improvement of a previously submitted dCas9 BBa_K1026001 since our part has been made biobrick compatible. Also we sequence confirmed and experimentally validated our part, which was not done by the 2016 Warwick team, who also improved this part.
Experimental validation
See dCas9VRER below
dCas9 VRER
Construction
This part was made from the pSB1C3:dCas9QC plasmid (see dCas9) which was completely sequenced. We replaced the final part of the dCas9QC with a gBlock containing the VRER mutations. The new construct was analysed by sequencing the last part containing the gblock (figure 4). Also a restriction analysis with EcoRI and PstI was performed (see the gel in dCas9 lane 4,figure 1).
Based on the validation (see below) we cannot conclude yet whether the VRER mutations have the desired effect. If we would have mixed up the
Experimental validation
This part was validated experimentally in the same experiment as dCas9. For this experiment we have designed four gRNA's that target GFP. Two of this gRNA's bind to sequences flanked by NGG (1&2) and two bind to a sequence flanked by NGCG (3&4). These gRNA's were inserted into the plasmid pSB3C5 containing a pLacGFP construct as well. For dCas9 and dCas9VRER expression those parts were put into a pBad vector in which they are expressed behind an Arabinose inducible promoter.
In total 18 E. coli strains were produced containing pBad:dCas9, pBad:dCas9VRER or no pBad combined with pS3C5 with one of the gRNA's, pSB3C5 without a gRNA or no pSB3C5 (Table below).
min | dCas9 | dCas9VRER |
---|---|---|
dH5α | dCas9:nopSB3C5 | dCas9VRER |
noPbad:nogRNA | dCas9:nogRNA | VRER:nogRNA |
noPbad:gRNA1 | dCas9:gRNA1 | VRER:gRNA1 |
noPbad:gRNA2 | dCas9:gRNA2 | VRER:gRNA2 |
noPbad:gRNA3 | dCas9:gRNA3 | VRER:gRNA3 |
noPbad:gRNA4 | dCas9:gRNA4 | VRER:gRNA4 |
All strains were grown overnight and the next day they were dilute to an OD of 0.05 in the afternoon. At the end of the afternoon at an OD of 0.4-0.6, all cultures were induced with a final concentration of 0.01% arabinose. All induced cultures were put back into the incubator (37C 220 rpm) and grown overnight. The next morning, the OD of all cultures was measured and diluted to an OD of 0.2 in LB (in final volume of 1mL). The OD and GFP (470/510) of all samples were measured in a plate reader in quadruplicate.
The data obtained from the fluorescence measurement were converted to relative fluorescence and are shown in figure 5. To convert the fluorescence to relative fluorescence we first divided all measured fluorescence values and divided them by the measured OD's. Next the fluorescence/OD of the negative controls (samples without pSB1C3) was subtracted from the other samples. Next, all normalized fluorescence/OD values were divided by that of the positive control (no pBad:pSB3C5 without gRNA).
CRISPR arrays
Construction
The construction of these parts all succeeded in terms of biobrick formation. As planned, the array itself was implemented into the backbone, after which the individual spacers were implemented to create the different derivatives of the array. The 20 and 21 derivatives were to be found correct after the first sequencing analysis. However, a second round of cloning was required to obtain the empty derivative of the CRISPR array.Future plans for the project
These different derivatives create a situation in which this system can be used to detect the specific spacers but also re-instate the "normal"system by having the empty array. This allows for using the system to obtain new spacers. However, without pre-programming the reporter with complementary spacers, there won't be a change in fluoresence. Future experiments could be incorperating this with the Tracr-RNA production and/or a signal sequence. Ultimately, this would also help towards incorporating all the designed elements of this project into a single organism.Lactis toolbox
Construction
For this part we started by...Experimental validation
After creating the part within the pSB1C3 biobrick format,...Considerations for replicating the experiments
Before this part can be fully integrated into a system, the next parameters should be measured:...Future plans for the project
Based on these results we suggest that the next experiments can be conducted:..Spacer acquisition
Construction
We planned to make this part from a combination of synthetic DNA(gblocks) and segments of the S. Pyogenes Cas9 operon from the plasmid pWJ40. We obtained these part by PCR reactions with the pWJ40 plasmid as template. The gblocks were used to remove the prohibited igem restriction sites and introduce the hCas9 mutation, I473F. All the parts were put together using gibson assembly. Based on the gel we selected two colonies for which we were most confident that they contained the correct construct. After sequencing it turned out that the I473F gblock fragment of the gene contained the wrong sequence (see figure below). Unfortunately we did not have enough time to repeat the construction of the biobrick compatible hCas9 operon.Besides the biobrick compatible hCas9 operon, we also wanted to create the tracrRNA. We created a tracrRNA under the constitutive pUSP45 promoter, which is also submitted as one of our parts BBA_K2361003. We first checked it on gel before it was sent for sequencing for verification.