Difference between revisions of "Team:CCU Taiwan/Demonstrate"

Line 227: Line 227:
 
   <section>
 
   <section>
  
 +
<h2>Biosensor</h2>
 +
<h3>Lactate detection system</h3>
  
<div id="Fluorescein">
+
<p>
<h2>Fluorescein Fluorescence standard curve</h2>
+
One of our biosensor is to detect the level of lactate. In order to achieve this purpose, we constructed a lactate detection system (BBa_K2292005) in E. coli.<br/>
 +
In order to test our lactate detection system work or not, we add different concentrations of lactic acid into the liquid culture of E. coli DH5α which contain lactate detection system.
  
</div>
+
</p>
  
<div id="Fluorescein-Plate-reader">
+
<img src="https://static.igem.org/mediawiki/2017/3/3f/DM_1.jpg" style="display:block; margin:auto;">
<div class="aaa"></div>
+
<p style="text-align:center;">a. The fluorescence of each lactate concentration depends on time.</p>
<h3>Plate reader</h3>
+
<br/>
 
+
    <p>
+
      microplate reader FLUOstar Omega</br>
+
emission filter: 520 nm</br>
+
excitation filter: 485 nm
+
    </p>
+
  
</div>
+
<img src="https://static.igem.org/mediawiki/2017/5/5a/DM_2.jpg" style="display:block; margin:auto;">
 
+
<p style="text-align:center;">b. The fluorescence of different time point depends on lactate level.</p>
<div id="Fluorescein-Material">
+
<div class="aaa"></div>
+
<h3>Material</h3>
+
<p>
+
Fluorescein sodium salt</br>
+
1xPBS</br>
+
Tissue culture testplate (black with flat bottom)
+
</p>
+
  
</div>
+
<img src="https://static.igem.org/mediawiki/2017/2/29/DM_3.jpg" style="display:block; margin:auto;">
 +
<p style="text-align:center;">c. Three-dimension diagram of fluorescence, time and lactate concentration</p>
  
<div id="Fluorescein-Method">
 
<div class="aaa"></div>
 
                <h3>Method</h3>
 
 
<ol><li>Prepare fluorescein stock solution</li></ol>
 
 
<p>
 
<p>
1. Spin down fluorescein stock tube to make sure pellet is at the bottom of tube.</br>
+
The fluorescence difference between each concentration of lactate is more obvious after 90 minutes. The experiment result demonstrates that the function of lactate detection is work.
2. Prepare 2x fluorescein stock solution (100 μM) by resuspending fluorescein in 1 mL of 1xPBS. </br>
+
3. Dilute the 2x fluorescein stock solution with 1xPBS to make a 1x fluorescein solution and resulting concentration of fluorescein  stock solution 50 μM </br></br>
+
 
</p>
 
</p>
<ol><li>Serial dilutions</li></ol>
+
 
 +
<h3>CSP detection system</h3>
 +
<ol><li>PCR result:Prove that we successfully transformed our plasmid into E.coli, DH5α</ol></li>
 +
<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;i. pSBBS1C</p>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2017/b/b4/EP1.jpg" style="display:block; margin:auto;">
 +
 
 +
<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ii. pSBBS4S</p>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2017/3/38/EP2.jpg" style="display:block; margin:auto;">
 +
 
 +
<ol><li>Functional test result</ol></li>
 +
 
 
<p>
 
<p>
1. Add 100 μl of PBS into wells A2, B2, C2, D2....A12, B12, C12, D12</br>
+
According to the measurement of absorbance of wavelength 595 nm, we can confirm that CSP isn’t toxin to Bacillus Subtilis.
2. Add 200 μl of fluorescein 1x stock solution into A1, B1, C1, D1</br>
+
3. Transfer 100 μl of fluorescein stock solution from A1 into A2. </br>
+
4. Mix A2 by pipetting up and down 3x and transfer 100 μl into A3. </br>
+
5. Mix A3 by pipetting up and down 3x and transfer 100 μl into A4. </br>
+
6. Mix A4 by pipetting up and down 3x and transfer 100 μl into A5. </br>
+
7. Mix A5 by pipetting up and down 3x and transfer 100 μl into A6. </br>
+
8. Mix A6 by pipetting up and down 3x and transfer 100 μl into A7. </br>
+
9. Mix A7 by pipetting up and down 3x and transfer 100 μl into A8. </br>
+
10. Mix A8 by pipetting up and down 3x and transfer 100 μl into A9. </br>
+
11. Mix A9 by pipetting up and down 3x and transfer 100 μl into A10.</br>
+
12. Mix A10 by pipetting up and down 3x and transfer 100 μl into A11. </br>
+
13. Mix A11 by pipetting up and down 3x and transfer 100 μl into liquid waste.
+
  (Caution: Do not to continue serial dilution into column 12.)</br>
+
 
</p>
 
</p>
<ol><li>repeat serial dilute for Row B、D、E</strong></li></ol>
 
<ol><li>Measure fluorescence of all samples in all standard measurement modes in instrument Record the data in your notebook</strong></li></ol>
 
<ol><li>Import data into Excel (fluorescein standard curve tab ) Sheet_1 provided</li></ol>
 
 
<br/><br/>
 
  
</div>
+
<img src="https://static.igem.org/mediawiki/2017/f/f7/DM_7.jpg" style="display:block; margin:auto;">
 +
<img src="https://static.igem.org/mediawiki/2017/4/4a/DM_8.png" style="display:block; margin:auto;">
  
<div id="Fluorescein-Data-result">
+
<p>
<div class="aaa"></div>
+
And for the measurement of the fluorescent plate reader (excitation: 485 nm, emission: 520 nm), we found out that the best amount of bacteria for measuring, the CSP conc. is at the value of OD600 = 0.2 after a series of experiment.  
<h3>Data result</h3>
+
</p>
<br/>
+
<img src="https://static.igem.org/mediawiki/2017/8/85/FFs_1.png" style="display:block; margin:auto;"><br/><br/>
+
<img src="https://static.igem.org/mediawiki/2017/a/a4/FFs_2.png" style="display:block; margin:auto;"><br/><br/>
+
<img src="https://static.igem.org/mediawiki/2017/5/5c/FFs_3.png" style="display:block; margin:auto;"><br/>
+
</div>
+
</section>
+
  
<section>
+
<img src="https://static.igem.org/mediawiki/2017/2/24/DM_10.tif" style="display:block; margin:auto;">
 +
 
 +
<p>
 +
The intensity of fluorescence slowly drops after a sharp rise in a small amount of time, hence we can tell that the reaction starts right away as soon as CSP is added.
 +
</p>
  
  
<div id="OD600">
 
<h2>OD600 Reference point</h2>
 
  
</div>
 
  
  
<div id="OD600-Plate-reader">
 
<div class="aaa"></div>
 
<h3>Plate reader</h3>
 
  
    <p>
 
Thermo Scientific™ Multiskan™ FC Filter-based Microplate Photometer</br>
 
Filter: 595 nm</br>
 
    </p>
 
  
</div>
 
  
<div id="OD600-Material">
 
  <div class="aaa"></div>
 
<h3>Material</h3>
 
<p>
 
1 ml LUDOX</br>
 
mQH<sub>2</sub>O</br>
 
96 well cell culture plate (clear with flat-bottom)
 
</p>
 
  
</div>
 
  
<div id="OD600-Method">
 
<div class="aaa"></div>
 
                <h3>Method</h3>
 
  
<p>
 
1. Add 100 μl LUDOX into wells A1, B1, C1, D1 (or 1 mL LUDOX into cuvette)</br>
 
2. Add 100 μl of H<sub>2</sub>O into wells A2, B2, C2, D2 (or 1 mL H<sub>2</sub>O into cuvette)</br>
 
3. Measure absorbance 600 nm of all samples in all standard measurement modes in instrument</br>
 
4. Record the data in excel and Import data into Excel ( OD600 reference point tab ) Sheet_1 provided</br>
 
</p>
 
 
</div>
 
  
<div id="OD600-Data-result">
 
<div class="aaa"></div>
 
<h3>Data result</h3>
 
<br/>
 
<img src="https://static.igem.org/mediawiki/2017/c/cd/Ee.jpeg" style="display:block; margin:auto;"><br/>
 
</div>
 
</section>
 
  
<section>
 
  
  
<div id="Cell">
 
<h2>Cell measure</h2>
 
  
</div>
 
  
  
<div id="Cell-Material">
 
  <div class="aaa"></div>
 
<h3>Material</h3>
 
<p>
 
Competent cells ( Escherichia coli strain DH5α)</br>
 
LB (Luria Bertani) media</br>
 
Chloramphenicol (stock concentration 25 mg/mL dissolved in EtOH - working stock 25 μg /mL)</br>
 
50 ml Falcon tube (or equivalent, preferably amber or covered in foil to block light)</br>
 
Incubator at 37°C</br>
 
1.5 ml eppendorf tubes for sample storage</br>
 
Ice bucket with ice</br>
 
Pipettes</br>
 
96 well plate(cell culture 96 well plate、tissue culture testplate)</br>
 
Devices (from InterLab Measurement Kit):</br>
 
1. Negative control(BBa_R0040)</br>
 
2. Positive control(J23151+B0032+E0040+B0010+B0012)</br>
 
3. Test Device 1: J23101+I13504</br>
 
4. Test Device 2: J23106+I13504</br>
 
5. Test Device 3: J23117+I13504</br>
 
6. Test Device 4: J23101+BCD2+E0040+B0015</br>
 
7. Test Device 5: J23106+BCD2+E0040+B0015</br>
 
8. Test Device 6: J23117+BCD2+E0040+B0015</br>
 
</p>
 
  
</div>
 
  
<div id="Cell-Method">
 
<div class="aaa"></div>
 
                <h3>Method</h3>
 
  
<p>
 
1. Day 1 : Resuspended each plasmid in plate 7 and transform into Escherichia coli DH5α.</br>
 
&nbsp;(Transformation protocol is from iGEM)</br>
 
2. Day 2 : Pick 2 colonies from each of plate and inoculate it on 5-10 mL LB medium +Chloramphenicol.Grow the cells overnight (16-18 hours) at 37°C and 170 rpm.</br>
 
3. Day 3 : Set instrument to read OD600 (as OD calibration setting)and measure OD600 of the overnight cultures</br>
 
4. Dilute the cultures to a target OD 600 of 0.02 in 12 ml LB medium + Chloramphenicol in 50 mL falcon tube (covered with foil to block light).</br>
 
5. Incubate the cultures at 37°C and 170 rpm.</br>
 
6. Take 1000 μL samples of the cultures at 0, 2, 4, and 6 hours of incubation and place samples on ice</br>
 
7. 4 replicates of 100 uL samples were taken from each culture at 0, 2, 4, and 6 hours of incubation and placed in a 96 well plate for OD and fluorescence measurements using the setup described above</br>
 
</p>
 
  
</div>
 
  
<div id="Cell-Data-result">
 
<div class="aaa"></div>
 
<h3>Data result</h3>
 
<br/>
 
<img src="https://static.igem.org/mediawiki/2017/f/f7/IL_cell1.jpg" style="display:block; margin:auto;"><br/><br/>
 
<img src="https://static.igem.org/mediawiki/2017/4/41/IL_cell2.jpg" style="display:block; margin:auto;"><br/>
 
</div>
 
 
</section>
 
</section>
  

Revision as of 01:53, 2 November 2017

No Sidebar - Helios by HTML5 UP

Biosensor

Lactate detection system

One of our biosensor is to detect the level of lactate. In order to achieve this purpose, we constructed a lactate detection system (BBa_K2292005) in E. coli.
In order to test our lactate detection system work or not, we add different concentrations of lactic acid into the liquid culture of E. coli DH5α which contain lactate detection system.

a. The fluorescence of each lactate concentration depends on time.


b. The fluorescence of different time point depends on lactate level.

c. Three-dimension diagram of fluorescence, time and lactate concentration

The fluorescence difference between each concentration of lactate is more obvious after 90 minutes. The experiment result demonstrates that the function of lactate detection is work.

CSP detection system

  1. PCR result:Prove that we successfully transformed our plasmid into E.coli, DH5α

          i. pSBBS1C

          ii. pSBBS4S

  1. Functional test result

According to the measurement of absorbance of wavelength 595 nm, we can confirm that CSP isn’t toxin to Bacillus Subtilis.

And for the measurement of the fluorescent plate reader (excitation: 485 nm, emission: 520 nm), we found out that the best amount of bacteria for measuring, the CSP conc. is at the value of OD600 = 0.2 after a series of experiment.

The intensity of fluorescence slowly drops after a sharp rise in a small amount of time, hence we can tell that the reaction starts right away as soon as CSP is added.