Difference between revisions of "Team:CCU Taiwan/Device design"

 
(34 intermediate revisions by one other user not shown)
Line 96: Line 96:
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Description">Description</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Description">Description</a></li>
 
                                                                                 <li>
 
                                                                                 <li>
<a href="https://2017.igem.org/Team:CCU_Taiwan/Biosensor">Biosensor</a>
+
<a href="https://2017.igem.org/Team:CCU_Taiwan/Design">Biosensor</a>
 
<ul>
 
<ul>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/CSP">CSP detector</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Design#CSP">CSP detector</a></li>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Lactate">Lactate detector</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Design#Lactate">Lactate detector</a></li>
 
</ul>
 
</ul>
 
</li>
 
</li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Test_paper">Test paper</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Test_paper">Test paper</a></li>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Experiment">Experiment</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Experiments">Experiments</a></li>
 
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Result">Result</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Results">Results</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Demonstrate">Demonstrate</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Demonstrate">Demonstrate</a></li>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Applied_Design">Applied Design</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Applied_Design">Applied design</a></li>
 +
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/InterLab">InterLab</a></li>
 +
 
 +
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Notebook">Notebook</a></li>
 +
 
 
</ul>
 
</ul>
 
</li>
 
</li>
Line 116: Line 120:
 
<ul>
 
<ul>
  
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Hardware">Hardware Overview</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Hardware">Hardware overview</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Device_design">Device design</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Device_design">Device design</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Device_detection">Device detection</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Device_detection">Device detection</a></li>
Line 137: Line 141:
 
<a href="#">Human practice</a>
 
<a href="#">Human practice</a>
 
<ul>
 
<ul>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/HP_Overview">Human practice overview</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Human_Practices">Human practice overview</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/HP/Silver">Silver HP</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/HP/Silver">Silver HP</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/HP/Gold_Integrated">Integrate & Gold</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/HP/Gold_Integrated">Integrate & Gold</a></li>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Engagement">Public Engagemant</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Engagement">Public engagemant</a></li>
 
 
 
</ul>
 
</ul>
 
</li>
 
</li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Entrepreneurship">Entrepreneurship</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Entrepreneurship">Entrepreneurship</a></li>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Safty">Safty</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Safety">Safety</a></li>
 
<li>
 
<li>
<a href="#">Part</a>
+
<a href="#">Parts</a>
 
<ul>
 
<ul>
<li><a href="#">Basic part</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Parts">Parts</a></li>
<li><a href="#">Composite part</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Basic_Part">Basic parts</a></li>
 +
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Composite_Part">Composite parts</a></li>
 
 
 
</ul>
 
</ul>
 
</li>
 
</li>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/InterLab">InterLab</a></li>
+
 
  
  
Line 160: Line 165:
 
<a href="#">Team</a>
 
<a href="#">Team</a>
 
<ul>
 
<ul>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Team_Member">Team Member</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Members">Team members</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Attributions">Attributions</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Attributions">Attributions</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Collaborations">Collaborations</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Collaborations">Collaborations</a></li>
Line 167: Line 172:
 
</li>
 
</li>
  
 +
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Medals">Medals</a></li>
 
 
 
</ul>
 
</ul>
Line 185: Line 191:
 
<ul>
 
<ul>
 
<li>
 
<li>
<a href="#Fluorescein">Fluorescein curve</a>
+
<a href="#Introduction">Device Introduction</a>
<ul>
+
<li><a href="#Fluorescein-Plate-reader">Plate reader</a></li>
+
<li><a href="#Fluorescein-Material">Material</a></li>
+
<li><a href="#Fluorescein-Method">Method</a></li>
+
<li><a href="#Fluorescein-Data-result">Data result</a></li>
+
</ul>
+
 
</li>
 
</li>
 
<li>
 
<li>
<a href="#OD600">OD600 Reference point</a>
+
<a href="#Shell">Shell</a>
      <ul>
+
 
<li><a href="#OD600-Plate-reader">Plate reader</a></li>
+
<li><a href="#OD600-Material">Material</a></li>
+
<li><a href="#OD600-Method">Method</a></li>
+
<li><a href="#OD600-Data-result">Data result</a></li>
+
      </ul>
+
 
</li>
 
</li>
  
 
<li>
 
<li>
<a href="#Cell">Cell measure</a>
+
<a href="#Holder">Holder</a>
      <ul>
+
</li>
<li><a href="#Cell-Material">Material</a></li>
+
<li>
<li><a href="#Cell-Method">Method</a></li>
+
<a href="#Glass">Glass slider</a>
<li><a href="#Cell-Data-result">Data result</a></li>
+
</li>
      </ul>
+
<li>
 +
<a href="#Optical">Optical system</a>
 +
</li>
 +
<li>
 +
<a href="#Elevator">Elevator</a>
 +
</li>
 +
<li>
 +
<a href="#demo">Device demo</a>
 
</li>
 
</li>
  
 +
<li>
 +
<a href="#Materials">Materials</a>
 +
</li>
 +
 +
<li>
 +
<a href="#Photo">Device Photo Album</a>
 +
</li>
  
 
</ul>
 
</ul>
Line 222: Line 232:
 
   <section>
 
   <section>
  
 +
<div id="Introduction">
 +
<h2>Device Introduction</h2>
 +
<p>
 +
Our device can be divided into five parts: shell, holder, glasses slides, optic design and elevator design.
 +
</p>
  
<div id="Fluorescein">
+
<img src="https://static.igem.org/mediawiki/2017/e/ec/%E9%99%841.gif" style="display:block; margin:auto;"><br/>
<h2>Devices demo</h2>
+
 
+
 
</div>
 
</div>
  
<div id="Fluorescein-Plate-reader">
 
<div class="aaa"></div>
 
<h3>process</h3>
 
<img src="https://static.igem.org/mediawiki/2017/d/d8/Device_DEMO.gif" style="display:block; margin:auto;"><br/>
 
    <p>
 
      1. Put the consumptive material into the devices and use the holder to fix it in position</br>
 
2. The holder rotates for bacteria activation</br>
 
3. Put the sample on the elevator</br>
 
4. Elevator move up and down</br>
 
5. Suck the sample up by capillary phenomenon</br>
 
6. The optical system work</br>
 
7. The holder rotates for the nest sample detection</br>
 
8. Finish detection</br>
 
</br>
 
movie demo
 
  
    </p>
+
<div id="Shell">
 +
<h2>Shell</h2>
  
 +
<img src="https://static.igem.org/mediawiki/2017/a/ae/%E9%99%842.png" width="500" height="500" style="display:block; margin:auto;"><br/>
 +
 +
<h3>What does it do</h3>
 +
<p>
 +
To support the components inside the device and protect them from damage.
 +
</p>
 +
 +
<h3>Brief Description</h3>
 +
<p>
 +
There is a door for the user to open it and change the consumptive material.
 +
</p>
 
</div>
 
</div>
 
 
  
<section>
+
<div id="Holder">
 +
<h2>Holder</h2>
 +
<img src="https://static.igem.org/mediawiki/2017/a/af/%E9%99%843.png" width="500" height="500" style="display:block; margin:auto;"><br/>
  
 +
<h3>What does it do</h3>
 +
<p>
 +
To hold the consumptive material and rotate it by a motor
 +
</p>
  
<div id="OD600">
+
<h3>Brief Description</h3>
<h2>Shell</h2>
+
<p>
 +
The holder design consists of 3 parts: motor, glass jig fixture and glass jig.
 +
</p>
  
</div>
+
<img src="https://static.igem.org/mediawiki/2017/7/76/%E9%99%844.JPG" style="display:block; margin:auto;"><br/>
  
 +
<h3>Design idea</h3>
  
<div id="OD600-Plate-reader">
+
<p>
<div class="aaa"></div>
+
[1] The purpose of using motor is to simplify the device. Because of the same fluorescence, the detecting system will be the same. Therefore, the motor is used to rotate the glass jig fixture for detecting the fluorescence emitted by the bacteria after it combine with the targets in the sensing system.<br/>
<h3>what is it for in our device?</h3>
+
[2] The glass jig fixture is designed to hold the consumptive material, which is a glass jig (a set of three glass slides with test paper). Considering the low cost and light load, so we chose a spring for being fixture.
 +
Moreover, there is a hole on the upper side of glasses jig and an extra part at the end of spring. All this are used to increase the stability
 +
</p>
  
    <p>
+
<img src="https://static.igem.org/mediawiki/2017/f/fb/%E9%99%845.png" style="display:block; margin:auto;"><br/>
Thermo Scientific™ Multiskan™ FC Filter-based Microplate Photometer</br>
+
Filter: 595 nm</br>
+
    </p>
+
  
 +
<p>
 +
[3] Using a glass jig is convenient for user to change the consumptive material. It should be better than changing three glass slides independently (picture 2)
 +
</p>
 +
 +
<img src="https://static.igem.org/mediawiki/2017/5/53/%E9%99%846.png" style="display:block; margin:auto;"><br/>
 
</div>
 
</div>
  
<div id="OD600-Material">
+
<div id="Glass">
  <div class="aaa"></div>
+
<h2>Glass slides</h2>
<h3>Material</h3>
+
<img src="https://static.igem.org/mediawiki/2017/4/4d/%E9%99%847.png" width="500" height="500" style="display:block; margin:auto;"><br/>
<p>
+
1 ml LUDOX</br>
+
mQH<sub>2</sub>O</br>
+
96 well cell culture plate (clear with flat-bottom)
+
</p>
+
  
</div>
+
<h3>What does it do</h3>
 +
<p>
 +
To release revive liquid for bacteria germination and suck the sample up by capillary phenomenon.
 +
</p>
 +
 
 +
<h3>Brief Description</h3>
 +
<p>
 +
The test paper with the engineered bacteria are placed between two piece of glass slides. And a tube containing the revive liquid located on the top of the glass slides.
 +
</p>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2017/7/7f/%E9%99%848.JPG" width="400" height="470" style="display:block; margin:auto;"><br/>
  
<div id="OD600-Method">
+
<h3>Design idea</h3>
<div class="aaa"></div>
+
                <h3>Method</h3>
+
  
 
<p>
 
<p>
1. Add 100 μl LUDOX into wells A1, B1, C1, D1 (or 1 mL LUDOX into cuvette)</br>
+
The principle of releasing revive liquid is about force equilibrium. When the top of the tube is stuffed with hot melt adhesive, there is an atmospheric pressure at the bottom of the tube to prevent the liquid from flowing out. Once the hot melt adhesive is disappearing, the atmospheric pressures (upper sides and bottom sides) are balanced, then the revive liquid will flow out due to the weight of revive liquid. <br/>
2. Add 100 μl of H<sub>2</sub>O into wells A2, B2, C2, D2 (or 1 mL H<sub>2</sub>O into cuvette)</br>
+
There is an obstacle fixed in the inner wall of the shell. When the consumptive material
3. Measure absorbance 600 nm of all samples in all standard measurement modes in instrument</br>
+
is rotating by the motor, the hot melt adhesive on the top of the tube will fall and then this principle will be applied.
4. Record the data in excel and Import data into Excel ( OD600 reference point tab ) Sheet_1 provided</br>
+
</p>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2017/7/78/%E9%99%8410.JPG" style="display:block; margin:auto;"><br/>
 +
 
 +
<p>
 +
Process of making glass slides<br/>
 +
1. we use two glass slides to hold a 1.5 CM X 1.5 CM text paper, and then we use an adhesive tape to stick the two glass slides <br/>
 +
2. put a small hot melt adhesive on the top of tube and fully cover the hole of the tube<br/>
 +
3. we put revive liquid into the tube by syringe.<br/>
 +
 
 +
In addition, we want to suck up our sample by applying capillary phenomenon. If the gap between two glass slides are sufficiently small, the liquid will be propelled up. Through regulation of the distance between two glass slides, we can also control the volume of the sample be sucked up. 
 +
 
 
</p>
 
</p>
 
 
</div>
 
</div>
  
<div id="OD600-Data-result">
+
 
<div class="aaa"></div>
+
<div id="Optical">
<h3>Data result</h3>
+
<h2>Optical system</h2>
<br/>
+
<img src="https://static.igem.org/mediawiki/2017/1/12/%E9%99%8411.png" width="500" height="500" style="display:block; margin:auto;"><br/>
<img src="https://static.igem.org/mediawiki/2017/c/cd/Ee.jpeg" style="display:block; margin:auto;"><br/>
+
 
 +
<h3>What does it do</h3>
 +
<p>
 +
To collect pH value and the fluorescence data emitted by the bacteria.
 +
</p>
 +
 
 +
<h3>Brief Description</h3>
 +
<p>
 +
We use a silicon photodiode (TSL235R) as optical sensor for detecting the fluorescence.
 +
In the fluorescence sensing system, firstly, a monochromatic is set to excite the fluorescent protein. Secondly, two lens and a filter is placed to filter the unwanted light and focus the rest on to the optical sensor to detect its fluorescence intensity.
 +
</p>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2017/9/95/%E9%99%8412.JPG" width="500" height="400" style="display:block; margin:auto;"><br/>
 +
 
 +
<p>
 +
For detecting the pH level, a color changing test paper is applied. And a color sensor is placed in front of it, which senses the test paper’s RGB value.
 +
</p>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2017/9/9f/%E9%99%8413.png" style="display:block; margin:auto;"><br/>
 +
 
 +
<h3>Design idea</h3>
 +
<p>
 +
[1] With two fluorescence detecting systems and a color changing system present, a T-shaped partition is used to separate them to decrease the inter influence.
 +
</p>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2017/0/0f/%E9%99%8414.JPG" style="display:block; margin:auto;"><br/>
 +
 
 +
<p>
 +
[2] The device must be enclosed in a dark environment and the optical sensor must be fixed to a stable area in the device in order to decrease noise interference from outside environment because the optical component is too sensitive that these interferences would bring up error.
 +
</p>
 
</div>
 
</div>
</section>
 
  
<section>
 
  
 +
<div id="Elevator">
 +
<h2>Elevator</h2>
  
<div id="Cell">
+
<img src="https://static.igem.org/mediawiki/2017/6/69/%E9%99%8415.JPG" width="500" height="500" style="display:block; margin:auto;"><br/>
<h2>Cell measure</h2>
+
  
 +
<h3>What does it do</h3>
 +
<p>
 +
To move sample container up and down.
 +
</p>
 +
 +
<h3>Brief description</h3>
 +
<p>
 +
When the time’s up, the elevator will put the sample container up. After that, the glass slides are dipped into the sample, the sample will suck up by capillary phenomenon and react with the test paper.
 +
</p>
 +
 +
<h3>Design idea</h3>
 +
<p>
 +
The idea of this design is come from the piston in car.
 +
In the beginning, we wanted to use lifting platform just like picture1, but it is too complicated and too big for our usage.
 +
</p>
 +
 +
<img src="https://static.igem.org/mediawiki/2017/0/0b/%E9%99%8416.jpg" style="display:block; margin:auto;"><br/>
 +
 +
<p>
 +
By observing how its work, we found that there is a pole set is similar to the piston working principle [1].
 +
</p>
 +
 +
<img src="https://static.igem.org/mediawiki/2017/3/34/%E9%99%8417.gif" style="display:block; margin:auto;"><br/>
 +
 +
<p>
 +
Then, we used wood to make a prototype to test out this idea. Finally, we find that the result is better than we thought, the design become simpler and smaller.
 +
</p>
 +
 +
<img src="https://static.igem.org/mediawiki/2017/b/bb/%E9%99%8418-1.jpg" width="300" height="400" style="display:inline; margin:auto;">
 +
<img src="https://static.igem.org/mediawiki/2017/a/a3/%E9%99%8418-2.jpg" width="300" height="400" style="display:inline; margin:auto;"><br/>
 +
 +
<p>
 +
Therefore, we put this idea in our devices design.
 +
</p>
 
</div>
 
</div>
  
 +
<div id="demo">
 +
<h2>Device demo</h2>
 +
<p>1. Put the consumptive material into the device and use the holder to fix it in position</p>
 +
<img src="https://static.igem.org/mediawiki/2017/9/99/%E9%99%8419.jpg" width="300" height="500" style="display:block; margin:auto;"><br/>
  
<div id="Cell-Material">
+
<p>2. The holder rotates for bacteria activation !! attentive observe!!</p>
  <div class="aaa"></div>
+
<video controls="true" style="width:100%;">
<h3>Material</h3>
+
<source src="https://static.igem.org/mediawiki/2017/9/97/%E9%99%8420-1.mp4" type="video/mp4"><br/>
<p>
+
</video>
Competent cells ( Escherichia coli strain DH5α)</br>
+
LB (Luria Bertani) media</br>
+
Chloramphenicol (stock concentration 25 mg/mL dissolved in EtOH - working stock 25 μg /mL)</br>
+
50 ml Falcon tube (or equivalent, preferably amber or covered in foil to block light)</br>
+
Incubator at 37°C</br>
+
1.5 ml eppendorf tubes for sample storage</br>
+
Ice bucket with ice</br>
+
Pipettes</br>
+
96 well plate(cell culture 96 well plate、tissue culture testplate)</br>
+
Devices (from InterLab Measurement Kit):</br>
+
1. Negative control(BBa_R0040)</br>
+
2. Positive control(J23151+B0032+E0040+B0010+B0012)</br>
+
3. Test Device 1: J23101+I13504</br>
+
4. Test Device 2: J23106+I13504</br>
+
5. Test Device 3: J23117+I13504</br>
+
6. Test Device 4: J23101+BCD2+E0040+B0015</br>
+
7. Test Device 5: J23106+BCD2+E0040+B0015</br>
+
8. Test Device 6: J23117+BCD2+E0040+B0015</br>
+
</p>
+
  
</div>
+
<video  width="300" height="500" controls="true" style="width:100%;">
 +
<source src="https://static.igem.org/mediawiki/2017/1/15/%E9%99%8420-2.mp4" type="video/mp4">
 +
</video><br/>
  
<div id="Cell-Method">
+
<p>3. Put the sample on the elevator</p>
<div class="aaa"></div>
+
<img src="https://static.igem.org/mediawiki/2017/4/46/%E9%99%8421.jpg"  width="300" height="500"  style="display:block; margin:auto;"><br/>
                <h3>Method</h3>
+
 
 +
<p>4. Elevator move up and down</p>
 +
<video controls="true" style="width:100%;">
 +
<source src="https://static.igem.org/mediawiki/2017/a/a6/%E9%99%8422.mp4" type="video/mp4">
 +
 
 +
</video><br/>
 +
 
 +
<p>5. Suck the sample up by capillary phenomenon !! attentive observe!!</p>
 +
<video  width="300" height="500" controls="true" style="width:100%;">
 +
<source src="https://static.igem.org/mediawiki/2017/c/ce/%E9%99%8423.mp4" type="video/mp4">
 +
 
 +
</video><br/>
 +
 
 +
<p>6. The optical system work </p>
 +
<img src="https://static.igem.org/mediawiki/2017/4/4a/%E9%99%8424.jpg" width="300" height="500" style="display:block; margin:auto;"><br/>
  
 
<p>
 
<p>
1. Day 1 : Resuspended each plasmid in plate 7 and transform into Escherichia coli DH5α.</br>
+
7. The holder rotates for the next sample detection<br/>
&nbsp;(Transformation protocol is from iGEM)</br>
+
8. Finish detection
2. Day 2 : Pick 2 colonies from each of plate and inoculate it on 5-10 mL LB medium +Chloramphenicol.Grow the cells overnight (16-18 hours) at 37°C and 170 rpm.</br>
+
 
3. Day 3 : Set instrument to read OD600 (as OD calibration setting)and measure OD600 of the overnight cultures</br>
+
4. Dilute the cultures to a target OD 600 of 0.02 in 12 ml LB medium + Chloramphenicol in 50 mL falcon tube (covered with foil to block light).</br>
+
5. Incubate the cultures at 37°C and 170 rpm.</br>
+
6. Take 1000 μL samples of the cultures at 0, 2, 4, and 6 hours of incubation and place samples on ice</br>
+
7. 4 replicates of 100 uL samples were taken from each culture at 0, 2, 4, and 6 hours of incubation and placed in a 96 well plate for OD and fluorescence measurements using the setup described above</br>
+
 
</p>
 
</p>
 +
</div>
  
 +
<div id="Materials">
 +
<h2>Materials</h2>
 +
<p>
 +
<li> Two motors (Tower Pro SG90)<br/>
 +
<li> Acrylic board<br/>
 +
<li> Tube<br/>
 +
<li> Syringe<br/>
 +
<li>    Spring
 +
</p>
 
</div>
 
</div>
  
<div id="Cell-Data-result">
+
<div id="Photo">
<div class="aaa"></div>
+
 
<h3>Data result</h3>
+
<h2>Device Photo Album</h2>
<br/>
+
 
<img src="https://static.igem.org/mediawiki/2017/f/f7/IL_cell1.jpg" style="display:block; margin:auto;"><br/><br/>
+
<img src="https://static.igem.org/mediawiki/2017/4/4e/Device_Photo_Album001.JPG" width="350" height="250" style="display:inline; margin:auto;">
<img src="https://static.igem.org/mediawiki/2017/4/41/IL_cell2.jpg" style="display:block; margin:auto;"><br/>
+
 
 +
<img src="https://static.igem.org/mediawiki/2017/b/b4/Device_Photo_Album002.JPG" width="350" height="250" style="display:inline; margin:auto;"><br/>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2017/c/c5/Device_Photo_Album003.JPG" width="350" height="250" style="display:inline; margin:auto;">
 +
 
 +
<img src="https://static.igem.org/mediawiki/2017/c/c8/Device_Photo_Album004.JPG" width="350" height="250" style="display:inline; margin:auto;"><br/>
 +
 
 
</div>
 
</div>
</section>
+
 
 +
 
 +
 
 +
</section>
 +
 
 +
 
 +
 
  
 
</article>
 
</article>
Line 388: Line 503:
  
 
<!-- Contact -->
 
<!-- Contact -->
<section class="contact">
+
+
<ul class="icons">
+
 
+
<li>
+
<a href="https://www.facebook.com/ccuigemteam" target="_blank">
+
<img src="https://static.igem.org/mediawiki/2016/2/2f/T--Harvard_BioDesign--images_facebook01.png"alt="Facebook Logo" style="width:51px;height:51px;">
+
</a>
+
</li>
+
 
+
              <li>
+
              <a href="emailto:ccu.igem.2017@gmail.com">
+
              <img src="https://static.igem.org/mediawiki/2016/e/e2/T--Harvard_BioDesign--images_gmail01.png" alt="Email Logo" style="width:51px;height:51px;">
+
              </a>
+
              </li>
+
 
+
 
+
             
+
 
+
</ul>
+
</section>
+
  
 
<!-- Copyright -->
 
<!-- Copyright -->
 
<div class="copyright">
 
<div class="copyright">
<ul class="menu">
+
<li>&#169; 2017 CCU Taiwan iGEM</li><li>Design: <a href="http://html5up.net">HTML5 UP</a></li>
+
</ul>
+
 
 
  
 
</div>
 
</div>
 
+
<img src="https://static.igem.org/mediawiki/2017/f/fb/Ccu.jpg" width="400" height="120" style="margin-top: 5em;
 +
    margin-right: 5em;">
 +
<img src="https://static.igem.org/mediawiki/2017/4/48/%E7%BF%94%E5%AE%8F-logo.jpg" width="400" height="120">
 
</div>
 
</div>
 
</div>
 
</div>
Line 424: Line 519:
  
 
</div>
 
</div>
 +
 +
<!-- Scripts -->
  
  
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 05:59, 15 December 2017

No Sidebar - Helios by HTML5 UP

Device Introduction

Our device can be divided into five parts: shell, holder, glasses slides, optic design and elevator design.


Shell


What does it do

To support the components inside the device and protect them from damage.

Brief Description

There is a door for the user to open it and change the consumptive material.

Holder


What does it do

To hold the consumptive material and rotate it by a motor

Brief Description

The holder design consists of 3 parts: motor, glass jig fixture and glass jig.


Design idea

[1] The purpose of using motor is to simplify the device. Because of the same fluorescence, the detecting system will be the same. Therefore, the motor is used to rotate the glass jig fixture for detecting the fluorescence emitted by the bacteria after it combine with the targets in the sensing system.
[2] The glass jig fixture is designed to hold the consumptive material, which is a glass jig (a set of three glass slides with test paper). Considering the low cost and light load, so we chose a spring for being fixture. Moreover, there is a hole on the upper side of glasses jig and an extra part at the end of spring. All this are used to increase the stability


[3] Using a glass jig is convenient for user to change the consumptive material. It should be better than changing three glass slides independently (picture 2)


Glass slides


What does it do

To release revive liquid for bacteria germination and suck the sample up by capillary phenomenon.

Brief Description

The test paper with the engineered bacteria are placed between two piece of glass slides. And a tube containing the revive liquid located on the top of the glass slides.


Design idea

The principle of releasing revive liquid is about force equilibrium. When the top of the tube is stuffed with hot melt adhesive, there is an atmospheric pressure at the bottom of the tube to prevent the liquid from flowing out. Once the hot melt adhesive is disappearing, the atmospheric pressures (upper sides and bottom sides) are balanced, then the revive liquid will flow out due to the weight of revive liquid.
There is an obstacle fixed in the inner wall of the shell. When the consumptive material is rotating by the motor, the hot melt adhesive on the top of the tube will fall and then this principle will be applied.


Process of making glass slides
1. we use two glass slides to hold a 1.5 CM X 1.5 CM text paper, and then we use an adhesive tape to stick the two glass slides
2. put a small hot melt adhesive on the top of tube and fully cover the hole of the tube
3. we put revive liquid into the tube by syringe.
In addition, we want to suck up our sample by applying capillary phenomenon. If the gap between two glass slides are sufficiently small, the liquid will be propelled up. Through regulation of the distance between two glass slides, we can also control the volume of the sample be sucked up.

Optical system


What does it do

To collect pH value and the fluorescence data emitted by the bacteria.

Brief Description

We use a silicon photodiode (TSL235R) as optical sensor for detecting the fluorescence. In the fluorescence sensing system, firstly, a monochromatic is set to excite the fluorescent protein. Secondly, two lens and a filter is placed to filter the unwanted light and focus the rest on to the optical sensor to detect its fluorescence intensity.


For detecting the pH level, a color changing test paper is applied. And a color sensor is placed in front of it, which senses the test paper’s RGB value.


Design idea

[1] With two fluorescence detecting systems and a color changing system present, a T-shaped partition is used to separate them to decrease the inter influence.


[2] The device must be enclosed in a dark environment and the optical sensor must be fixed to a stable area in the device in order to decrease noise interference from outside environment because the optical component is too sensitive that these interferences would bring up error.

Elevator


What does it do

To move sample container up and down.

Brief description

When the time’s up, the elevator will put the sample container up. After that, the glass slides are dipped into the sample, the sample will suck up by capillary phenomenon and react with the test paper.

Design idea

The idea of this design is come from the piston in car. In the beginning, we wanted to use lifting platform just like picture1, but it is too complicated and too big for our usage.


By observing how its work, we found that there is a pole set is similar to the piston working principle [1].


Then, we used wood to make a prototype to test out this idea. Finally, we find that the result is better than we thought, the design become simpler and smaller.


Therefore, we put this idea in our devices design.

Device demo

1. Put the consumptive material into the device and use the holder to fix it in position


2. The holder rotates for bacteria activation !! attentive observe!!


3. Put the sample on the elevator


4. Elevator move up and down


5. Suck the sample up by capillary phenomenon !! attentive observe!!


6. The optical system work


7. The holder rotates for the next sample detection
8. Finish detection

Materials

  • Two motors (Tower Pro SG90)
  • Acrylic board
  • Tube
  • Syringe
  • Spring

  • Device Photo Album