Difference between revisions of "Team:CCU Taiwan/Device detection"

 
(10 intermediate revisions by 2 users not shown)
Line 96: Line 96:
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Description">Description</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Description">Description</a></li>
 
                                                                                 <li>
 
                                                                                 <li>
<a href="https://2017.igem.org/Team:CCU_Taiwan/Biosensor">Biosensor</a>
+
<a href="https://2017.igem.org/Team:CCU_Taiwan/Design">Biosensor</a>
 
<ul>
 
<ul>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/CSP">CSP detector</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Design#CSP">CSP detector</a></li>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Lactate">Lactate detector</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Design#Lactate">Lactate detector</a></li>
 
</ul>
 
</ul>
 
</li>
 
</li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Test_paper">Test paper</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Test_paper">Test paper</a></li>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Experiment">Experiment</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Experiments">Experiments</a></li>
 
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Result">Result</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Results">Results</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Demonstrate">Demonstrate</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Demonstrate">Demonstrate</a></li>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Applied_Design">Applied Design</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Applied_Design">Applied design</a></li>
 +
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/InterLab">InterLab</a></li>
 +
 
 +
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Notebook">Notebook</a></li>
 +
 
 
</ul>
 
</ul>
 
</li>
 
</li>
Line 116: Line 120:
 
<ul>
 
<ul>
  
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Hardware">Hardware Overview</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Hardware">Hardware overview</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Device_design">Device design</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Device_design">Device design</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Device_detection">Device detection</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Device_detection">Device detection</a></li>
Line 137: Line 141:
 
<a href="#">Human practice</a>
 
<a href="#">Human practice</a>
 
<ul>
 
<ul>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/HP_Overview">Human practice overview</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Human_Practices">Human practice overview</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/HP/Silver">Silver HP</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/HP/Silver">Silver HP</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/HP/Gold_Integrated">Integrate & Gold</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/HP/Gold_Integrated">Integrate & Gold</a></li>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Engagement">Public Engagemant</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Engagement">Public engagemant</a></li>
 
 
 
</ul>
 
</ul>
 
</li>
 
</li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Entrepreneurship">Entrepreneurship</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Entrepreneurship">Entrepreneurship</a></li>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Safty">Safty</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Safety">Safety</a></li>
 
<li>
 
<li>
<a href="#">Part</a>
+
<a href="#">Parts</a>
 
<ul>
 
<ul>
<li><a href="#">Basic part</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Parts">Parts</a></li>
<li><a href="#">Composite part</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Basic_Part">Basic parts</a></li>
 +
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Composite_Part">Composite parts</a></li>
 
 
 
</ul>
 
</ul>
 
</li>
 
</li>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/InterLab">InterLab</a></li>
+
 
  
  
Line 160: Line 165:
 
<a href="#">Team</a>
 
<a href="#">Team</a>
 
<ul>
 
<ul>
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Members">Team Members</a></li>
+
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Members">Team members</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Attributions">Attributions</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Attributions">Attributions</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Collaborations">Collaborations</a></li>
 
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Collaborations">Collaborations</a></li>
Line 167: Line 172:
 
</li>
 
</li>
  
 +
<li><a href="https://2017.igem.org/Team:CCU_Taiwan/Medals">Medals</a></li>
 
 
 
</ul>
 
</ul>
Line 185: Line 191:
 
<ul>
 
<ul>
 
<li>
 
<li>
<a href="#Devices">Device detection</a>
+
<a href="#Detection">Detection</a>
 
<ul>
 
<ul>
<li><a href="#light">Light intensity</a></li>
+
<li><a href="#Fluorescence">Fluorescence detection</a></li>
<li><a href="#pH">pH value</a></li>
+
<li><a href="#Optical">Optical system</a></li>
<li><a href="#Materials">Materials</a></li>
+
<li><a href="#The">Monochromatic light</a></li>
+
<li><a href="#Experiment">Experiment</a></li>
 
</ul>
 
</ul>
 
</li>
 
</li>
  
 +
<li>
 +
<a href="#pH">pH level</a>
 +
 +
</li>
 +
 +
<li>
 +
<a href="#Transmission">Transmission</a>
 +
 +
</li>
 +
 +
<li>
 +
<a href="#Future">Future Plan</a>
 +
 +
</li>
 +
 +
<li>
 +
<a href="#Materials">Materials</a>
 +
 +
</li>
  
 
</ul>
 
</ul>
Line 205: Line 230:
  
  
<div id="Devices">
+
<div id="Detection">
<h2>Device detection</h2>
+
<h2>Detection</h2>
  
 
<p>
 
<p>
For our detecting, we use Arduino UNO with a light to frequency converter to detect the light intensity of GFP, and a color detector to distinguish the color of the test paper.
+
We used Arduino UNO with a light frequency converter to detect the light intensity of GFP, and a color detector to distinguish the color of the test paper.
 
</p>
 
</p>
 
<br/>
 
<br/>
 
</div>
 
</div>
  
<div id="light">
+
 
 +
<div id="Fluorescence">
 
<div class="aaa"></div>
 
<div class="aaa"></div>
<h3>Detecting of the light intensity</h3>
+
<h3>Fluorescence detection</h3>
 +
<p>
 +
First, we set the light frequency converter(TSL235R) to measure the light intensity of GFP emitted from our CSP and Lactic acid detectors.<br>
 +
Secondly, we created a standard curve by using a measuring instrument in our laboratory to detect the light intensity emitted from known concentrations of CSP and Lactic acid precisely.<br>
 +
Finally, we compared the light intensity detected by our device with the standard curve to determine the concentration of CSP or Lactic acid in the sample.<br>
  
    <p>
+
</p>
      First, We select the light to frequency converter to receive the light intensity of GFP which is emitted from our CSP and Lactic acid,
+
</div>
and we collect the frequency from the output of converter for every detection.
+
 
Second, we use the measuring instrument in the laboratory to detect accurately to know the light intensity emitted from our CSP and Lactic acid.<br/>
+
<div id="Optical">
Finally, we model the curve for the light intensity and the frequency, so we can know the light intensity relatively when we collect the frequency from the converter.<br/>
+
<div class="aaa"></div>
The following curve is the light intensity of GFP corresponded to the frequency of the converter.<br/><br/>
+
<h3>Optical system</h3>
<img src="https://static.igem.org/mediawiki/2017/d/d4/F_to_d.png" style="display:block; margin:auto;"><br/>
+
<p>
 +
For the detection of the fluorescence emitted by the bacteria after it combines with the targets, a monochromatic light(485nm) was set to excite the fluorescent protein. An optical sensor(TSL235R), two lens and a longpass filter(510nm) were placed to filter the unwanted light and focus the rest onto the optical sensor to detect its fluorescence intensity.
 +
</p>
  
    </p>
+
<img src="https://static.igem.org/mediawiki/2017/4/4b/FFF.jpg" style="display:block; margin:auto;"><br/>
 
</div>
 
</div>
  
 
 
  
 +
<div id="The">
 +
<div class="aaa"></div>
 +
<h3>The monochromatic light</h3>
 +
<p>
 +
The GFP we were using was GFPmut3. Picture A shows the excitation maxima of GFPmut3 is 501nm, and picture B shows the emission maxima is 511nm.
 +
</p>
  
 +
<img src="https://static.igem.org/mediawiki/2017/e/e7/DR2.png" style="display:block; margin:auto;"><br/>
  
 +
<p>
 +
The purple line is the 510nm filter what we use, but it’s starting point is not 510nm exactly. So we chose the 485nm light to avoid unwanted light detection.
 +
</p>
  
<div id="pH">
+
<img src="https://static.igem.org/mediawiki/2017/0/0c/DR4.png" style="display:block; margin:auto;"><br/>
 +
</div>
 +
 
 +
 
 +
<div id="Experiment">
 
<div class="aaa"></div>
 
<div class="aaa"></div>
<h3>Detecting of the pH value</h3>
+
<h3>Experiment</h3>
 +
<p>
 +
The following curve is the fluorescein concentration corresponded to the frequency of the converter, so we know the lowest limit of our converter for detecting the fluorescein concentration is 6.25uM.
 +
</p>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2017/2/21/DR6.png" style="display:block; margin:auto;"><br/>
 +
 
 +
<p>
 +
The next curve is the fluorescein concentration corresponded to the fluorescence in order to check whether two curves have similar positive correlation.
 +
</p>
 +
 
 +
<img src="https://static.igem.org/mediawiki/2017/a/a7/DR5.png" style="display:block; margin:auto;"><br/>
 +
</div>
 +
 
 +
<div id="pH">
 +
<h2>pH level</h2>
 +
 
 +
<p>
 +
We chose a test paper with a range from pH 5.0 to pH 8.0. For example, when the color of the test paper changes from red to green, the pH value changes from 5 to 8. Color detection is used to to detect the test paper and register the RGB value.
 +
The RGB value allows us to measure the pH value.
 +
</p>
  
    <p>
 
We choose the test paper changing its color from pH5.0 to pH8.0, for example, when the color of the test paper changing from red to green, the pH valut changing from 5 to 8,
 
and then use the color detector to detect the test paper and collect the value of RGB, so we can know the pH value after we draw the curve between the value of RGB and the pH value.<br/>
 
<br/>
 
 
<img src="https://static.igem.org/mediawiki/2017/c/ca/Ph_v.png" style="display:block; margin:auto;"><br/>
 
<img src="https://static.igem.org/mediawiki/2017/c/ca/Ph_v.png" style="display:block; margin:auto;"><br/>
 +
</div>
  
Final, these five values (two for the light intensity, and three for the values of Red, Green, and Blue ) we receved will be transmitted from Arduino by our Bluetooth, HC-06, to the APP.
+
 
    </p>
+
<div id="Transmission">
<br/>
+
<h2>Transmission</h2>
 +
<p>
 +
Five values (two for the fluorescence intensity, three for the RGB values) we received will be transmitted from Arduino to the APP by our Bluetooth, HC-06.
 +
</p>
 
</div>
 
</div>
  
 +
<div id="Future">
 +
<h2>
 +
Future Plan
 +
</h2>
  
 +
<p>
 +
For the fluorescence intensity, we hope we can detect the larger range of the fluorescence intensity by the circuit we designed so that the accuracy can be improved.
 +
<br/>
 +
For the pH level, we hope we can plot the suitable curve or update our App to know the precise pH value in the future.
 +
 +
</p>
 +
</div>
  
 
<div id="Materials">
 
<div id="Materials">
<div class="aaa"></div>
 
<h3>Materials</h3>
 
<p>
 
Arduino Uno
 
Test paper<br/>
 
TSL 235R<br/>
 
510nm Filter<br/>
 
485nm LED<br/>
 
TCS3200<br/>
 
HC-06<br/>
 
Convex lens<br/>
 
Small Breadbroad<br/>
 
Male to Female DuPont Breadboard Jumper Wires
 
  
</p>
+
<h2>Materials</h2>
 +
<p>
 +
<li> Arduino Uno<br/>
 +
<li> Slides<br/>
 +
<li> Test paper<br/>
 +
<li> 485nm monochromatic light<br/>
 +
<li> 510nm filter <br/>
 +
<li> Lens<br/>
 +
<li> TSL 235R<br/>
 +
<li> TCS3200<br/>
 +
<li> HC-06<br/>
 +
<li> Small Breadbroad<br/>
 +
<li> Male to Female DuPont Breadboard Jumper Wires
  
 +
 +
</p>
 
</div>
 
</div>
 +
 +
 +
 
</section>
 
</section>
  
Line 301: Line 381:
  
 
<!-- Contact -->
 
<!-- Contact -->
<section class="contact">
+
+
<ul class="icons">
+
 
+
<li>
+
<a href="https://www.facebook.com/ccuigemteam" target="_blank">
+
<img src="https://static.igem.org/mediawiki/2016/2/2f/T--Harvard_BioDesign--images_facebook01.png"alt="Facebook Logo" style="width:51px;height:51px;">
+
</a>
+
</li>
+
 
+
              <li>
+
              <a href="emailto:ccu.igem.2017@gmail.com">
+
              <img src="https://static.igem.org/mediawiki/2016/e/e2/T--Harvard_BioDesign--images_gmail01.png" alt="Email Logo" style="width:51px;height:51px;">
+
              </a>
+
              </li>
+
 
+
 
+
             
+
 
+
</ul>
+
</section>
+
  
 
<!-- Copyright -->
 
<!-- Copyright -->
 
<div class="copyright">
 
<div class="copyright">
<ul class="menu">
+
<li>&#169; 2017 CCU Taiwan iGEM</li><li>Design: <a href="http://html5up.net">HTML5 UP</a></li>
+
</ul>
+
 
 
  
 
</div>
 
</div>
 
+
<img src="https://static.igem.org/mediawiki/2017/f/fb/Ccu.jpg" width="400" height="120" style="margin-top: 5em;
 +
    margin-right: 5em;">
 +
<img src="https://static.igem.org/mediawiki/2017/4/48/%E7%BF%94%E5%AE%8F-logo.jpg" width="400" height="120">
 
</div>
 
</div>
 
</div>
 
</div>
Line 337: Line 397:
  
 
</div>
 
</div>
 +
 +
<!-- Scripts -->
  
  
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 06:00, 15 December 2017

No Sidebar - Helios by HTML5 UP

Detection

We used Arduino UNO with a light frequency converter to detect the light intensity of GFP, and a color detector to distinguish the color of the test paper.


Fluorescence detection

First, we set the light frequency converter(TSL235R) to measure the light intensity of GFP emitted from our CSP and Lactic acid detectors.
Secondly, we created a standard curve by using a measuring instrument in our laboratory to detect the light intensity emitted from known concentrations of CSP and Lactic acid precisely.
Finally, we compared the light intensity detected by our device with the standard curve to determine the concentration of CSP or Lactic acid in the sample.

Optical system

For the detection of the fluorescence emitted by the bacteria after it combines with the targets, a monochromatic light(485nm) was set to excite the fluorescent protein. An optical sensor(TSL235R), two lens and a longpass filter(510nm) were placed to filter the unwanted light and focus the rest onto the optical sensor to detect its fluorescence intensity.


The monochromatic light

The GFP we were using was GFPmut3. Picture A shows the excitation maxima of GFPmut3 is 501nm, and picture B shows the emission maxima is 511nm.


The purple line is the 510nm filter what we use, but it’s starting point is not 510nm exactly. So we chose the 485nm light to avoid unwanted light detection.


Experiment

The following curve is the fluorescein concentration corresponded to the frequency of the converter, so we know the lowest limit of our converter for detecting the fluorescein concentration is 6.25uM.


The next curve is the fluorescein concentration corresponded to the fluorescence in order to check whether two curves have similar positive correlation.


pH level

We chose a test paper with a range from pH 5.0 to pH 8.0. For example, when the color of the test paper changes from red to green, the pH value changes from 5 to 8. Color detection is used to to detect the test paper and register the RGB value. The RGB value allows us to measure the pH value.


Transmission

Five values (two for the fluorescence intensity, three for the RGB values) we received will be transmitted from Arduino to the APP by our Bluetooth, HC-06.

Future Plan

For the fluorescence intensity, we hope we can detect the larger range of the fluorescence intensity by the circuit we designed so that the accuracy can be improved.
For the pH level, we hope we can plot the suitable curve or update our App to know the precise pH value in the future.

Materials

  • Arduino Uno
  • Slides
  • Test paper
  • 485nm monochromatic light
  • 510nm filter
  • Lens
  • TSL 235R
  • TCS3200
  • HC-06
  • Small Breadbroad
  • Male to Female DuPont Breadboard Jumper Wires