Difference between revisions of "Team:Glasgow"

 
(158 intermediate revisions by 9 users not shown)
Line 1: Line 1:
{{Glasgow}}
+
{{GlasgowHeader}}<html>
<html>
+
<div class="photo-block" id="Frontpage">
 
+
<div class="text left">
<head>
+
<div class="title">
<style>
+
<i>Campy</i>LOCATOR
 
+
</div>
</style>
+
<div class="sub">
</head>
+
Detection of <i>Campylobacter jejuni</i> for the prevention of food poisoning </i>
<body>
+
</div>
 
+
</div>
 
+
 
+
<p></p>
+
 
+
<div class="column full_size" >
+
<img src="https://static.igem.org/mediawiki/2017/1/11/IGEM_Glasgow_2017_WikiBanner.jpeg">
+
 
</div>
 
</div>
 
+
<div class="text-block" id="project-desc">
<html>
+
<div class="title">
<p></p>
+
Project Description
<head>
+
</div>
<style>
+
<div class="copy_container row">
.container {
+
<div class="large-6 columns">
    width: 100%;
+
<p class="copy">
    overflow: hidden;
+
<i>Campylobacter </i> species, especially <i>Campylobacter jejuni</i>, are bacterial pathogens responsible for the majority of food poisoning in the UK. This bacteria is considered to cause over 280,000 cases of bacterial gastroenteritis annually. Although also found on red meat, unpasteurized milk and unfiltered water, 4 out of 5 cases of campylobacteriosis come from contaminated chickens. During the slaughter process the bacterium gets transferred onto the chicken skin and is often found on fresh retail chickens and their packaging. The most important transmission route is consumption of undercooked chicken or other foods that get cross-contaminated from raw poultry meat. </p>
    background-color: #333;
+
</div>
    font-family: Arial;
+
<div class="large-6 columns">
}
+
<p class="copy"> Current detection systems for the pathogen are time-consuming, expensive and inaccessible for everyday users. We therefore aimed to develop a new, cheaper and faster system for detection of <i>C. jejuni</i> using synthetic biology. We approached this by genetically engineering <i>Escherichia coli</i> to serve a function of a dual-input biosensor. The bacterium will sense bacterial quorum sensing signals and xylulose - a sugar naturally present in the outer capsule of <i>Campylobacter jejuni</i>, to detect the pathogen on a swabbed surface. </p>
 
+
<p class="copy"></p>
.container a {
+
</div>
    float: left;
+
</div>
    font-size: 16px;
+
    color: white;
+
    text-align: center;
+
    padding: 14px 16px;
+
    text-decoration: none;
+
}
+
 
+
.dropdown {
+
    float: left;
+
    overflow: hidden;
+
}
+
 
+
.dropdown .dropbtn {
+
    font-size: 16px;   
+
    border: none;
+
    outline: none;
+
    color: white;
+
    padding: 14px 16px;
+
    background-color: inherit;
+
}
+
 
+
.container a:hover, .dropdown:hover .dropbtn {
+
    background-color:  rgb(64, 180, 255);
+
}
+
 
+
.dropdown-content {
+
    display: none;
+
    position: absolute;
+
    background-color: #f9f9f9;
+
    min-width: 160px;
+
    box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
+
    z-index: 1;
+
}
+
 
+
.dropdown-content a {
+
    float: none;
+
    color: black;
+
    padding: 12px 16px;
+
    text-decoration: none;
+
    display: block;
+
    text-align: left;
+
}
+
 
+
.dropdown-content a:hover {
+
    background-color: #ddd;
+
}
+
 
+
.dropdown:hover .dropdown-content {
+
    display: block;
+
}
+
</style>
+
</head>
+
<body>
+
 
+
<div class="container">
+
  <a href="https://2017.igem.org/Team:Glasgow">Home</a>
+
  <div class="dropdown">
+
    <button class="dropbtn">Team</button>
+
    <div class="dropdown-content">
+
      <a href="https://2017.igem.org/Team:Glasgow/Team">Team</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Collaborations">Collaborations</a>
+
    </div>
+
  </div>
+
  <div class="dropdown">
+
    <button class="dropbtn">Project</button>
+
    <div class="dropdown-content">
+
      <a href="https://2017.igem.org/Team:Glasgow/Description">Description</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Design">Design</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Experiments">Experiments</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Notebook">Notebook</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/InterLab">InterLab</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Contribution">Contribution</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Model">Model</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Results">Results</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Demonstrate">Demonstrate</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Improve">Improve</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Attributions">Attributions</a>
+
    </div>
+
  </div>
+
  <div class="dropdown">
+
    <button class="dropbtn">Parts</button>
+
    <div class="dropdown-content">
+
      <a href="https://2017.igem.org/Team:Glasgow/Parts">Parts</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Basic_Part">Basic Parts</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Composite_Part">Composite Parts</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Part_Collection">Part Collection</a>
+
    </div>
+
  </div> 
+
  <a href="https://2017.igem.org/Team:Glasgow/Safety">Safety</a>
+
  <div class="dropdown">
+
    <button class="dropbtn">Human Practices</button>
+
    <div class="dropdown-content">
+
      <a href="https://2017.igem.org/Team:Glasgow/HP/Silver">Silver HP</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/HP/Gold_Integrated">Integrated and Gold</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Engagement">Public Engagement</a>
+
    </div>
+
  </div>
+
  <div class="dropdown">
+
    <button class="dropbtn">Awards</button>
+
    <div class="dropdown-content">
+
      <a href="https://2017.igem.org/Team:Glasgow/Applied_Design">Applied Design</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Entrepreneurship">Entrepreneurship</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Hardware">Hardware</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Measurement">Measurement</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Model">Model</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Plant">Plant</a>
+
      <a href="https://2017.igem.org/Team:Glasgow/Software">Software</a>
+
    </div>
+
  </div>
+
 
</div>
 
</div>
 
+
<div class="photo-block" id="Ceremony">
 
+
<div class="text right">
<div class="column full_size">
+
<div class="title">
<h1> Project Description </h1>
+
<a href="https://2017.igem.org/Team:Glasgow/Accomplishments">Our Accomplishments at the Jamboree!</a>
<p> Our project idea is to develop a biosensor to detect the presence of the bacteria <i>Campylobacter</i>. This sensor will utilise the rare sugar xylulose, which is found in the polysaccharide capsule of campylobacter and is released when the bacteria is run through an acidic solution. By exploiting the mannitol operon that is present in the bacteria <i>Pseudomonas fluorescens</i> and expressing this in our chassis organism, <i>Escherichia Coli</i>, we will produce a biosensor that will express the reporter molecule Green Fluorescent Protein (GFP) when xylulose interacts with the repressor molecule of the mannitol operon. Additional sub-projects will include; investigating the quorum sensing mechanisms in <i>campylobacter</i> to increase the specificity of our sensor, developing hardware to produce a functioning biosensor and investigating the legal and ethical issues associated with our project.</p>
+
</div>
 
+
</div>
 
+
<div class="column half_size" >
+
<p>The mannitol operon contains a promoter, Pe, which is regulated by xylulose, sorbitol and mannitol. The operon typically regulates the expression of genes required for mannitol consumption. By hijacking this xylulose regulated promoter we hope to develop a construct capable of activating GFP in the presence of xylulose. A schematic of the construct is shown in the diagram opposite. To provide increased specificity to our biosensor, we are aiming to detect autoinducer-2, a quorum sensing molecule released by <i>campylobacter</i>. We aim to insert the LsrA promotor followed by YFP into a plasmid which turns on when autoinducer-2 is present. For our proof of concept, we need to work with xylulose. However, xylulose is rare and, as such, is expensive. Therefore, we will synthesise xylulose by utilising a metabolic step in the bacterial pentose pathway. The enzyme Xylose Isomerase can be purified from E. coli, and used to convert the inexpensive sugar xylose in to xylulose.</p>
+
 
</div>
 
</div>
 
+
<div class="photo-block" id="Xylulose">
<div class="column half_size" >
+
<div class="text right">
<img src="https://static.igem.org/mediawiki/2017/5/56/Glasgow_iGEM_2017_MannitolOperon.png">
+
<div class="title">
 +
<a href="https://2017.igem.org/Team:Glasgow/mtlR">Engineering <i>E. coli</i> to Respond to <i>Campylobacter</i>-Associated Sugar</a>
 +
</div>
 +
</div>
 
</div>
 
</div>
 
+
<div class="photo-block" id="AraC">
<div class="column full_size" >
+
<div class="text right">
<p>For the engineering part of the project, we are aiming to build a functional biosensor that will be able to prove our construct. We will use technologies such as microfluidics and ultrafiltration to produce a sensor that will use our modified E.coli to give a visual indication of the presence of campylobacter. In terms of human practices, we will be adopting a double approach; one that focuses on the legal and political issues concerning EU legislation, which will affect our ability to manufacture a biosensor outside a properly licensed laboratory; and one on ethical issues concerning the impact that food safety has on human health. This second approach will mainly aim to raise awareness among the public on preventative measures in order to avoid campylobacter poisoning.</p>  
+
<div class="title">
 +
<a href="https://2017.igem.org/Team:Glasgow/araC">Expanding the Biosensor parts Toolkit, using <i>araC</i> Mutants</a>
 +
</div>
 +
</div>
 +
</div>
 +
<div class="photo-block" id="Hardware">
 +
<div class="text right">
 +
<div class="title">
 +
<a href="https://2017.igem.org/Team:Glasgow/Hardware">Designing a Functional Prototype Biosensor device</a>
 +
</div>
 +
</div>
 +
</div>
 +
<div class="photo-block" id="Public">
 +
<div class="text right">
 +
<div class="title">
 +
<a href="https://2017.igem.org/Team:Glasgow/Outreach">Engaging with the world about <i>Campylobacter</i></a>
 +
</div>
 +
</div>
 
</div>
 
</div>
  
 
+
</html>{{GlasgowFooter}}
 
+
</html>
+

Latest revision as of 21:00, 15 December 2017

Glasgow iGEM 2017
CampyLOCATOR
Detection of Campylobacter jejuni for the prevention of food poisoning
Project Description

Campylobacter species, especially Campylobacter jejuni, are bacterial pathogens responsible for the majority of food poisoning in the UK. This bacteria is considered to cause over 280,000 cases of bacterial gastroenteritis annually. Although also found on red meat, unpasteurized milk and unfiltered water, 4 out of 5 cases of campylobacteriosis come from contaminated chickens. During the slaughter process the bacterium gets transferred onto the chicken skin and is often found on fresh retail chickens and their packaging. The most important transmission route is consumption of undercooked chicken or other foods that get cross-contaminated from raw poultry meat.

Current detection systems for the pathogen are time-consuming, expensive and inaccessible for everyday users. We therefore aimed to develop a new, cheaper and faster system for detection of C. jejuni using synthetic biology. We approached this by genetically engineering Escherichia coli to serve a function of a dual-input biosensor. The bacterium will sense bacterial quorum sensing signals and xylulose - a sugar naturally present in the outer capsule of Campylobacter jejuni, to detect the pathogen on a swabbed surface.

Using synthetic biology to create a biosensor for detection of Campylobacter jejuni, a bacteria linked to food poisoning.