Difference between revisions of "Team:Tongji China/Model"

Line 24: Line 24:
 
     <meta name="description" content="2017 Tongji iGEM team wiki">
 
     <meta name="description" content="2017 Tongji iGEM team wiki">
 
     <meta name="viewport" content="width=device-width, initial-scale=1.0, minimum-scale=1.0">
 
     <meta name="viewport" content="width=device-width, initial-scale=1.0, minimum-scale=1.0">
     <title>Tongji iGEM - Description</title>
+
     <title>Tongji iGEM - Model</title>
  
 
     <script src="https://2017.igem.org/Template:Tongji_China/Javascript?action=raw&ctype=text/javascript"></script>
 
     <script src="https://2017.igem.org/Template:Tongji_China/Javascript?action=raw&ctype=text/javascript"></script>
     <script type="text/javascript" src="your_path/jquery.js"></script>
+
     <script src="https://2017.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
    <script type="text/javascript" src="your_path/jquery.jqzoom.js"></script>
+
 
 
     <!-- Page styles -->
 
     <!-- Page styles -->
 
     <link rel="stylesheet" type="text/css" href="https://2017.igem.org/Template:Tongji_China/CSS?action=raw&ctype=text/css">
 
     <link rel="stylesheet" type="text/css" href="https://2017.igem.org/Template:Tongji_China/CSS?action=raw&ctype=text/css">
 
     <link rel="stylesheet" type="text/css" href="https://2017.igem.org/Template:Tongji_China/CSS_2?action=raw&ctype=text/css">
 
     <link rel="stylesheet" type="text/css" href="https://2017.igem.org/Template:Tongji_China/CSS_2?action=raw&ctype=text/css">
 
     <link rel="stylesheet" type="text/css" href="https://2017.igem.org/Template:Tongji_China/CSS_3?action=raw&ctype=text/css">
 
     <link rel="stylesheet" type="text/css" href="https://2017.igem.org/Template:Tongji_China/CSS_3?action=raw&ctype=text/css">
    <link rel="stylesheet" href="your_path/jqzoom.css" type="text/css" media="screen">
 
 
  
 
     <style>
 
     <style>
Line 114: Line 112:
 
         <div class="mdl-layout__header-row">
 
         <div class="mdl-layout__header-row">
 
           <span class="android-title mdl-layout-title">
 
           <span class="android-title mdl-layout-title">
             <div class="logo-font">Tongji iGEM</div>
+
             <div class="logo-font">TongJi iGEM</div>
 
           </span>
 
           </span>
 
           <!-- Add spacer, to align navigation to the right in desktop -->
 
           <!-- Add spacer, to align navigation to the right in desktop -->
Line 129: Line 127:
 
           </div>
 
           </div>
 
           <span class="android-mobile-title mdl-layout-title">
 
           <span class="android-mobile-title mdl-layout-title">
             <div class="logo-font">Tongji iGEM</div>
+
             <div class="logo-font">TongJi iGEM</div>
 
           </span>
 
           </span>
 
         </div>
 
         </div>
Line 140: Line 138:
 
           <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Tongji_China/Team">Team</a>
 
           <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Tongji_China/Team">Team</a>
 
           <div class="android-drawer-separator"></div>
 
           <div class="android-drawer-separator"></div>
     
 
 
           <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Tongji_China/Description">Description</a>
 
           <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Tongji_China/Description">Description</a>
 
           <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Tongji_China/Design">Design</a>
 
           <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Tongji_China/Design">Design</a>
Line 166: Line 163:
 
       </div>
 
       </div>
 
       <a name="top"></a>
 
       <a name="top"></a>
 
  
 
       <!-- HERE STARTS THE PAGE -->
 
       <!-- HERE STARTS THE PAGE -->
Line 173: Line 169:
 
         <!-- Title and Subtitle -->
 
         <!-- Title and Subtitle -->
 
         <div class="mdl-typography--text-center" style="margin-bottom:20%">
 
         <div class="mdl-typography--text-center" style="margin-bottom:20%">
           <div class="logo-font android-slogan" style="color:#388E3C;">Modeling</div>
+
           <div class="logo-font android-slogan" style="color:#388E3C;">Model</div>
 
           <div class="logo-font android-sub-slogan" style="color:#757575;">
 
           <div class="logo-font android-sub-slogan" style="color:#757575;">
             Countine......<br>
+
             Modelling allows us to estimate what is too complex to be determined experimentally at this stage.<br>
 
             <i class="material-icons">expand_more</i>
 
             <i class="material-icons">expand_more</i>
 
           </div>
 
           </div>
 
         </div>
 
         </div>
  
 
+
        <!-- Background -->
 
+
<!-- Background -->
+
 
         <div class="demo-card-wide mdl-card mdl-shadow--2dp">
 
         <div class="demo-card-wide mdl-card mdl-shadow--2dp">
 
           <div class="mdl-card__title" style="text-align:center">
 
           <div class="mdl-card__title" style="text-align:center">
Line 188: Line 182:
 
           </div>
 
           </div>
 
           <div class="mdl-card__supporting-text" style="font-size: 115%">
 
           <div class="mdl-card__supporting-text" style="font-size: 115%">
Male-male courtship will undoubtedly affect the population growth. We believe that the method of releasing male-male courtship fruit flies can be used to the population control, and further extend to controlling of more kind of pests. Meanwhile, we find that forward researches indicate the method of releasing "sterilization" mosquitoes which did not hatch the eggs to achieve the goal of population control. We think that the two methods of collaboration may have a better effect on population control, so we build a mathematical model to validate our idea.<br><br>
+
            Male-male courtship will undoubtedly affect the population growth. We believe that the method of releasing male-male courtship fruit flies can be used for population control, and be further extended to controlling more kinds of pest. We also found that the "sterilization" of mosquitoes, which do not hatch eggs, has been researched for population control. We think that the two aproaches may work more effectively when used together, so we built a mathematical model to validate our idea.
 
           </div>
 
           </div>
      </div>  
+
          <div class="android-drawer-separator"></div>
 +
        </div>
  
<!-- Theory -->
+
        <!-- Theory -->
 
         <div class="demo-card-wide mdl-card mdl-shadow--2dp">
 
         <div class="demo-card-wide mdl-card mdl-shadow--2dp">
 
           <div class="mdl-card__title" style="text-align:center">
 
           <div class="mdl-card__title" style="text-align:center">
             <h4 class="mdl-card__title-text" style="font-size: 250%; color:#5a5a5a"> Theory </h4>  
+
             <h4 class="mdl-card__title-text" style="font-size: 250%; color:#5a5a5a">Theory</h4>
 
           </div>
 
           </div>
 
           <div class="mdl-card__supporting-text" style="font-size: 115%">
 
           <div class="mdl-card__supporting-text" style="font-size: 115%">
 +
            First, we set the program with the thoughts of "sterilization" mosquitoes as a<sub>1</sub>. We can assume that the number of male mosquitoes and female mosquitoes in the wild environment is set to 1, and the number of male mosquitoes is 5, so the number of offspring is reduced to 1/6. With the universality hypothesis, the number of wild-type male mosquitoes and female mosquitoes in the environment is 1, and the amount of male modified mosquitoes is y, that is, the male modified mosquitoes released are as much as y times of the wild-type mosquitoes, we will use this parameter later. Then supposing that the proportion of all survivors is p(a<sub>1</sub>), and we can get:
  
        First, we set the program with the thoughts of "sterilization" mosquitoes as "a1". We can assume that the number of male mosquitoes and female mosquitoes in the wild environment is set to 1, and the number of sterilized male mosquitoes is 5, so the number of offspring is reduced to 1/6. Then we can promote it, the number of wild-type male mosquitoes and female mosquitoes in the environment is 1, and we set the amount of sterilized male mosquitoes as y, that is, the male modified mosquitoes released are as much as y times of the wild-type mosquitoes, we will use this parameter later. Then we can get the proportion of all survivors of this program, let's set it as p(a1), and we can get:
+
            $$
 +
            p(a_1) = \frac{1}{1+y} \qquad [1]
 +
            $$
  
<br><br>
+
            Therefore we tried to apply this idea to our project, to make our modified fruit flies not only having the pursuit of the same characteristics but also making the next generations which cannot be hatched. We set this program as '''a<sub>1</sub>'''. Assuming that the number of wild-type male and female fruit flies in the environment is 1, the amount of fruit fly is converted to y. According to the results of the behavioral experiments, the modified fruit flies have the same probabilities to male and female, The ratio of fruit flies to normal hatching p(a<sub>1</sub>) is:
  
<div align="center"><img src="https://static.igem.org/mediawiki/2017/5/53/2017tongji_image_model_formula1.jpeg"/ width="25%"></div>
+
            $$
 +
            p(a_2) = \frac{1}{1+\frac{y}{x}} \qquad [2]
 +
            $$
  
Therefore we tried to apply this idea to our project, to make our modified fruit flies not only having the pursuit of the same characteristics but also making the next generations which cannot be hatched.  We set this program as "a2". Assuming that the number of wild-type male and female fruit flies in the environment is 1, the amount of fruit fly is converted to y. According to the results of the behavioral experiments, the modified fruit flies have the same probabilities to male and female, The ratio of fruit flies to normal hatching p(a2) is <br><br>
+
            It can be found that the "sterilization" individuals in previous projects are superior to our male-male courtship individuals in terms of the inhibition of the number of offspring populations. However, in our model, each female flies are mated when the ratio of male to female is at 1: 1. Suppose the mating rate is k, so k=1. But k should be, in the natural situation, less than 1. When increasing the number of male fruit flies, the ratio k of mating female flies to the total number of females increased. It changes into k’:
  
<div align="center"><img src="https://static.igem.org/mediawiki/2017/b/b5/2017tongji_image_model_formula2.jpeg"/ width="25%"></div>
+
            $$
 +
            k' = k \cdot (1+y) \qquad [3]
 +
            $$
  
It can be found that the "sterilization" individuals in previous projects are superior to our male-male courtship individuals in terms of the inhibition of the number of offspring populations. However, in our model, each female flies are mated when the ratio of male to female is at 1: 1. Suppose the mating rate is k, so k=1. But k should be, in the natural situation, less than 1. When increasing the number of male fruit flies, the ratio k of mating female flies to the total number of females increased. It changes into k’ <br><br>
+
            But we should make a discussion of this formula. When k*(1+y)>1, we make k’=1; when k*(1+y)<=1, making k’=k*(1+y).
  
<div align="center"><img src="https://static.igem.org/mediawiki/2017/4/43/2017tongji_image_model_formula3.jpeg"/ width="26%"></div>
+
            $$
 +
            k'=
 +
            \begin{cases}
 +
            k \cdot (1+y) \qquad k \cdot (1+y) \le 1 \\
 +
            1 \quad \qquad \qquad k \cdot (1+y) \gt 1 \\
 +
            \end{cases}
 +
            \qquad [4]
 +
            $$
  
 +
            So p(a<sub>1</sub>) can be worked out:
  
But we should make a discussion of this formula. When k*(1+y)>1, we make k’=1; when k*(1+y)<=1, making k’=k*(1+y). <br><br>
+
            $$
 +
            p(a_1)=
 +
            \begin{cases}
 +
            k \qquad \qquad k \cdot (1+y) \le 1 \\
 +
            \frac{1}{1+y} \quad \qquad k \cdot (1+y) \gt 1 \\
 +
            \end{cases}
 +
            \qquad [5]
 +
            $$
  
<div align="center"><img src="https://static.igem.org/mediawiki/2017/b/b5/2017tongji_image_model_formula4.jpeg"/ width="38%"></div>
+
            In our project’s model, we assume that among the male fruit flies with the number of y, half sterile male flies that have male-male courtship, and the number of modified flies who chases modified flies is x. And we can also assume that half of these flies are active. And among the sterile flies with male-male courtship, the number of flies who is active is (y/2-x). The pursuer the two different flies chose is (y/2-x/2) and (1+y/2) respectively. So we can conclude a equation as follow
  
So p(a1) can be worked out : <br><br>
+
            $$
 +
            \frac
 +
            {\frac{x}{2}}
 +
            {\frac{y}{2}-x}
 +
            =
 +
            \frac
 +
            {\frac{y}{2}-\frac{x}{2}}
 +
            {1+\frac{y}{2}}
 +
            \qquad [6]
 +
            $$
  
<div align="center"><img src="https://static.igem.org/mediawiki/2017/b/bc/2017tongji_image_model_formula5.jpeg"/ width="45%"></div>
+
            By Solving equation, we can know that:
  
In our project’s model, we assume that among the male fruit flies with the number of y, half sterile male flies that have male-male courtship, and the number of modified flies who chases modified flies is x. And we can also assume that half of these flies are active. And among the sterile flies with male-male courtship, the number of flies who is active is (y/2-x). The pursuer the two different flies chose is (y/2-x/2) and (1+y/2) respectively. So we can conclude a equation as follow <br><br>
+
            $$
 +
            x =
 +
            \frac
 +
            {2y+1- \sqrt{2y^2+4y+1}}
 +
            {2}
 +
            \qquad [7]
 +
            $$
  
<div align="center"><img src="https://static.igem.org/mediawiki/2017/f/fc/2017tongji_image_model_formula6.jpeg"/ width="25%"></div>
+
            After release sterile male flies with male-male courtship, the ratio of mated female flies changes to:
  
By Solving equation, we can know that: <br><br>
+
            $$
 +
            k' =
 +
            \frac
 +
            {k \cdot (1+ \frac{y}{2})}
 +
            {1+ \frac{y}{2}-x}
 +
            \qquad [8]
 +
            $$
  
<div align="center"><img src="https://static.igem.org/mediawiki/2017/d/db/2017tongji_image_model_formula7.jpeg"/ width="33%"></div>
+
            So p(a<sub>1</sub>) can be worked out:
  
After release sterile male flies with male-male courtship, the ratio of mated female flies changes to : <br><br>
+
            $$
 +
            p(a_2)=
 +
            \begin{cases}
 +
            \frac{k}{1+ \frac{y}{2}-x}    \quad \qquad \frac{k \cdot (1+ \frac{y}{2})}{1+ \frac{y}{2}-x} \le 1 \\
 +
            \frac{1}{1+ \frac{y}{2}}      \qquad \qquad \frac{k \cdot (1+ \frac{y}{2})}{1+ \frac{y}{2}-x} \gt 1 \\
 +
            \end{cases}
 +
            \qquad [9]
 +
            $$
  
<div align="center"><img src="https://static.igem.org/mediawiki/2017/7/7d/2017tongji_image_model_formula8.jpeg"/ width="25%"></div>
+
            As we can see, although the radio of offspring that was incubated normally increased a little than previous research, which is a disadvantage in population control, but if we regard the female flies’ crossover rate less then 1, among the offspring of sterile flies with male-male courtship, the number of flies that can be incubated normally will decrease, which can control the population in to some extent. And the effect of this way is better than releasing sterile male flies.<br><br>
  
So p(a2) can be worked out : <br><br>
+
            As simulation the change of population in one day is not enough to prove that this way can control the population. So we decided to simulation the change of population in fifteen day. In order to achieve this goal, we will use Leslie matrix.
  
<div align="center"><img src="https://static.igem.org/mediawiki/2017/6/67/2017tongji_image_model_formula9.jpeg"/ width="55%"></div>
+
            <div class="mdl-card__supporting-text" style="font-size: 115%; text-align:center">Leslie Matrix</div>
  
As we can see, although the radio of offspring that was incubated normally increased a little than previous research, which is a disadvantage in population control, but if we regard the female flies’ crossover rate less then 1, among the offspring of sterile flies with male-male courtship, the number of flies that can be incubated normally will decrease, which can control the population in to some extent. And the effect of this way is better than releasing sterile male flies. <br><br>
+
            In 1945, Leslie P H. introduced a mathematical method to predict the age structure and population through time from the age structure of the initial population.<br><br>
  
 +
            Depending on the physiological characteristics of each individual, the maximum life age is divided into M groups. The objective it to find how the age distribution evolves. The time starts from t=0 and evolves in steps (t=0, 1, 2...), and the interval is the same as that of the age group.<br><br>
  
As simulation the change of population in one day is not enough to prove that this way can control the population. So we decided to simulation the change of population in fifteen day. In order to achieve this goal, we will use Leslie matrix.
+
            Suppose that, at the beginning (t=0), the number of individuals in the I age group was n<sub>i</sub>(0), i= 1, 2,... m. so the age distribution vector is:
<br><br>
+
+
  
          <div class="mdl-card__title" style="text-align:center">
+
            $$
                          <div class="mdl-card__supporting-text" style="font-size: 125%; color:#5a5a5a">
+
            \overrightarrow n(0) = [n_1(0),  n_2(0), …, n_m(0)]^T
             Leslie matrix
+
             $$
          </div>
+
          </div>
+
     
+
  
 +
            The reproductive rate of the I age group is f<sub>i</sub>(0) ,i= 1, 2,... M;<br>
 +
            The survival rate is S<sub>i</sub>(>0), i= 1, 2,... m - 1;<br>
 +
            Between two periods, there is an iterative relationship between the number of individuals in each age group n<sub>i</sub>:
  
 +
            $$
 +
            \begin{cases}
 +
            n_1 (t + 1) = \sum_{i=1}^m f_i \cdot n_i(t) = f_i \cdot n_1 (t) + f_2 \cdot n_2(t) + … + f_m \cdot n_m (t)  \\
 +
            n_i (t + 1) = S_{i-1} \cdot n_{i-1}(t) \qquad i = 2, 3, …,m \\
 +
            \end{cases}
 +
            $$
  
 +
            Note 1: In f_i new individuals who have been born within the period of t but have not lived to the (t+ 1) period have been deducted.<br>
 +
            Note 2: Usually in the population of bisexual reproduction, only the number of females is counted.<br><br>
  
In 1945, Leslie P H. introduced a mathematical method to predict the age structure and number of population with time by using the age structure of an initial population. <br><br>
+
            In matrix form:
  
According to the physiological characteristics of each individual, the maximum life age is divided into m groups, and then the distribution of age at different time will be discussed. The time is also dispersed into t= 0, 1, 2,... The interval is the same as that of the age group. t= 0 corresponds to the initial time. <br><br>
+
            $$
 +
            L=\begin{bmatrix}{}
 +
            f_1 & f_2 & ... & f_{m-1} & f_m\\
 +
            S_1 & 0 & 0 & 0 & 0\\
 +
            0 & S_2 & 0 & 0 & 0\\
 +
            0 & 0 & ... & 0 & 0\\
 +
            0 & 0 & 0 & S_{m-1} & 0
 +
            \end{bmatrix}
 +
            $$
  
Supposing that at the beginning (t= 0), the number of individuals in the I age group was ni (0), i= 1, 2,..., m. so the vector is <br><br>
+
            It's called the Leslie matrix.<br>
 +
            Since
 +
            \(
 +
            \overrightarrow n(t) = [n_1(t), n_2(t), , n_m(t)]^T
 +
            \)
 +
            , then equation [1] can be expressed as
 +
            $$
 +
            \overrightarrow n(t+1) = \overrightarrow n(t+1) L
 +
            $$
  
<div align="center"><img src="https://static.igem.org/mediawiki/2017/e/e9/2017tongji_image_model_equation1.jpeg"/ width="30%"></div>
+
            So if L and n(0) are known, for any t>0:
  
The reproductive rate of the ith age group is f i (≥0) ,i= 1, 2,... m; survival rate was S i (> 0), i= 1, 2,... m - 1. Between two periods, there is an iterative relationship between the number of individuals in each age group ni: <br><br>
+
            $$
 
+
            \overrightarrow n(t) = \overrightarrow n(0) L^t
 
+
            $$
<div align="center"><img src="https://static.igem.org/mediawiki/2017/2/21/2017tongji_image_model_formula10.jpeg"/ width="70%"></div>
+
          </div>
 
+
          <div class="android-drawer-separator"></div>
Note 1: In fi, new individuals who have been born within the period of t but have not lived to the (t+ 1) period have been deducted. <br>
+
        </div>
Note 2: Usually, in the population of bisexual reproduction, only the number of females is counted. <br><br>
+
 
+
Make the matrix:<br><br>
+
 
+
<div align="center"><img src="https://static.igem.org/mediawiki/2017/9/97/2017tongji_image_model_formula11.jpeg"/ width="48%"></div>
+
 
+
It is called the Leslie matrix. <br><br>
+
 
+
n(t) = [n1 (t) , n2 (t) , …, nm (t) ]T, then equation (1) can be expressed as <br><br>
+
 
+
<div align="center"><img src="https://static.igem.org/mediawiki/2017/2/2c/2017tongji_image_model_formula12.jpeg"/ width="28%"></div>
+
 
+
So when L , n(0) are known, for any t= 1, 2, …,<br><br>
+
 
+
 
+
<div align="center" ><img src="https://static.igem.org/mediawiki/2017/b/bd/2017tongji_image_model_equation2.jpeg"/ width="13%" ></div>
+
 
+
<br><br>
+
 
+
  </div>
+
</div>  
+
  
 
         <!-- Results and discussion -->
 
         <!-- Results and discussion -->
 
         <div class="demo-card-wide mdl-card mdl-shadow--2dp">
 
         <div class="demo-card-wide mdl-card mdl-shadow--2dp">
 
           <div class="mdl-card__title" style="text-align:center">
 
           <div class="mdl-card__title" style="text-align:center">
             <h4 class="mdl-card__title-text" style="font-size: 250%; color:#5a5a5a"> Results and discussion </h4>  
+
             <h4 class="mdl-card__title-text" style="font-size: 250%; color:#5a5a5a">Results and Discussion</h4>
 
           </div>
 
           </div>
 
           <div class="mdl-card__supporting-text" style="font-size: 115%">
 
           <div class="mdl-card__supporting-text" style="font-size: 115%">
 
+
            1. In a<sub>1</sub>, the results of p are shown in the following table:<br><br>
 
+
            Table 1<br>
1. In a1, the results of p are shown in the following table: <br><br>
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
Table 1<br>
+
Draw the image:<br>
+
          <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
 
               <img src="https://static.igem.org/mediawiki/2017/e/e0/2017tongji_image_model_f1.jpeg" alt="NO DESCRIPTION" style="width:100%">
 
               <img src="https://static.igem.org/mediawiki/2017/e/e0/2017tongji_image_model_f1.jpeg" alt="NO DESCRIPTION" style="width:100%">
 
               <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
 
               <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
Line 309: Line 353:
 
               </div> -->
 
               </div> -->
 
             </div>
 
             </div>
<br>
+
            <br>
<div class="text" style=" text-align:center;">Figure1</div>
+
            <div class="text" style=" text-align:center;">Figure1</div>
<br><br>
+
            <br><br>
  
 
+
            2. In a<sub>1</sub>, the results of p are shown in the following table:<br><br>
2. In a1, the results of p are shown in the following table:<br><br>
+
            Table 2<br>
Table 2<br>
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
Draw the image:<br>
+
                <img src=" https://static.igem.org/mediawiki/2017/5/51/2017tongji_image_model_f2.jpeg" alt="NO DESCRIPTION" style="width:100%">
          <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
              <img src=" https://static.igem.org/mediawiki/2017/5/51/2017tongji_image_model_f2.jpeg" alt="NO DESCRIPTION" style="width:100%">
+
                  white:#f0f0f0 or black:#0F0F0F
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                  NO DESCRIPTION
                white:#f0f0f0 or black:#0F0F0F
+
                </div> -->
                NO DESCRIPTION
+
              </div> -->
+
 
             </div>
 
             </div>
<br>
+
            <br>
<div class="text" style=" text-align:center;">Figure2</div>
+
            <div class="text" style=" text-align:center;">Figure2</div>
<br><br>
+
            <br><br>
  
 
+
            3. The results of p(a<sub>1</sub>)-p(a<sub>1</sub>) are shown in the following table:<br><br>
3. The results of p(a2)-p(a1 ) are shown in the following table:<br><br>
+
            Table 3<br>
Table 3<br>
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
Draw the image:<br>
+
                <img src=" https://static.igem.org/mediawiki/2017/2/22/2017tongji_image_demo_1.jpg" alt="NO DESCRIPTION" style="width:100%">
          <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
              <img src=" https://static.igem.org/mediawiki/2017/2/22/2017tongji_image_demo_1.jpg" alt="NO DESCRIPTION" style="width:100%">
+
                  white:#f0f0f0 or black:#0F0F0F
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                  NO DESCRIPTION
                white:#f0f0f0 or black:#0F0F0F
+
                </div> -->
                NO DESCRIPTION
+
              </div> -->
+
 
             </div>
 
             </div>
<br>
+
            <br>
<div class="text" style=" text-align:center;">Figure3</div>
+
            <div class="text" style=" text-align:center;">Figure3</div>
<br><br>
+
            <br><br>
 +
            It can be seen that in the case of the small mating rate, the inhibition effect of releasing sterile male flies with male-male courtship is more obvious to reducing population quantity, which is consistent with the purpose of our modeling. <br><br>
  
It can be seen that in the case of the small mating rate, the inhibition effect of releasing sterile male flies with male-male courtship is more obvious to reducing population quantity, which is consistent with the purpose of our modeling. <br><br>
+
            4. y=5, the effect of different mating rates k on the results of p in the two methods is as follows:<br><br>
 
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
4.y=5, the effect of different mating rates k on the results of p in the two methods is as follows:<br><br>
+
                <img src=" https://static.igem.org/mediawiki/2017/3/3c/2017tongji_image_model_f4.jpg" alt="NO DESCRIPTION" style="width:100%">
          <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
              <img src=" https://static.igem.org/mediawiki/2017/3/3c/2017tongji_image_model_f4.jpg" alt="NO DESCRIPTION" style="width:100%">
+
                  white:#f0f0f0 or black:#0F0F0F
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                  NO DESCRIPTION
                white:#f0f0f0 or black:#0F0F0F
+
                </div> -->
                NO DESCRIPTION
+
              </div> -->
+
 
             </div>
 
             </div>
<br>
+
            <br>
<div class="text" style=" text-align:center;">Figure4</div>
+
            <div class="text" style=" text-align:center;">Figure4</div>
<br><br>
+
            <br><br>
  
In the figure above, the yellow line represents the sterile male flies with male-male courtship, and the purple line represents the sterile male flies. We can see that when the mating rate is less than 0.7, releasing sterile male flies with male-male courtship cause more obvious effect.
+
            In the figure above, the yellow line represents the sterile male flies with male-male courtship, and the purple line represents the sterile male flies. We can see that when the mating rate is less than 0.7, releasing sterile male flies with male-male courtship cause more obvious effect.
<br><br>
+
            <br><br>
  
5. y=5, the effect of different mating rates k on the final population in 15 days is as follows:<br><br>
+
            5. y=5, the effect of different mating rates k on the final population in 15 days is as follows:<br><br>
          <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
              <img src=" https://static.igem.org/mediawiki/2017/a/a8/2017tongji_image_model_f5.jpg" alt="NO DESCRIPTION" style="width:100%">
+
                <img src=" https://static.igem.org/mediawiki/2017/a/a8/2017tongji_image_model_f5.jpg" alt="NO DESCRIPTION" style="width:100%">
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
                white:#f0f0f0 or black:#0F0F0F
+
                  white:#f0f0f0 or black:#0F0F0F
                NO DESCRIPTION
+
                  NO DESCRIPTION
              </div> -->
+
                </div> -->
 
             </div>
 
             </div>
<br>
+
            <br>
  
<div class="text" style=" text-align:center;">Figure5    The mating rate is 0.1</div>
+
            <div class="text" style=" text-align:center;">Figure5    The mating rate is 0.1</div>
<br><br>
+
            <br><br>
  
<div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
              <img src=" https://static.igem.org/mediawiki/2017/1/1d/2017tongji_image_model_f6.jpg" alt="NO DESCRIPTION" style="width:100%">
+
                <img src=" https://static.igem.org/mediawiki/2017/1/1d/2017tongji_image_model_f6.jpg" alt="NO DESCRIPTION" style="width:100%">
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
                white:#f0f0f0 or black:#0F0F0F
+
                  white:#f0f0f0 or black:#0F0F0F
                NO DESCRIPTION
+
                  NO DESCRIPTION
              </div> -->
+
                </div> -->
 
             </div>
 
             </div>
<br>
+
            <br>
  
<div class="text" style=" text-align:center;">Figure6    The mating rate is 0.2</div>
+
            <div class="text" style=" text-align:center;">Figure6    The mating rate is 0.2</div>
<br><br>
+
            <br><br>
  
  
<div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
              <img src=" https://static.igem.org/mediawiki/2017/5/59/2017tongji_image_model_f7.jpg" alt="NO DESCRIPTION" style="width:100%">
+
                <img src=" https://static.igem.org/mediawiki/2017/5/59/2017tongji_image_model_f7.jpg" alt="NO DESCRIPTION" style="width:100%">
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
                white:#f0f0f0 or black:#0F0F0F
+
                  white:#f0f0f0 or black:#0F0F0F
                NO DESCRIPTION
+
                  NO DESCRIPTION
              </div> -->
+
                </div> -->
 
             </div>
 
             </div>
<br>
+
            <br>
  
<div class="text" style=" text-align:center;">Figure7    The mating rate is 0.3</div>
+
            <div class="text" style=" text-align:center;">Figure7    The mating rate is 0.3</div>
<br><br>
+
            <br><br>
  
<div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
              <img src=" https://static.igem.org/mediawiki/2017/3/34/2017tongji_image_demo_2.jpeg  " alt="NO DESCRIPTION" style="width:100%">
+
                <img src=" https://static.igem.org/mediawiki/2017/3/34/2017tongji_image_demo_2.jpeg  " alt="NO DESCRIPTION" style="width:100%">
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
                white:#f0f0f0 or black:#0F0F0F
+
                  white:#f0f0f0 or black:#0F0F0F
                NO DESCRIPTION
+
                  NO DESCRIPTION
              </div> -->
+
                </div> -->
 
             </div>
 
             </div>
<br>
+
            <br>
  
<div class="text" style=" text-align:center;">Figure8    The mating rate is 0.4</div>
+
            <div class="text" style=" text-align:center;">Figure8    The mating rate is 0.4</div>
<br><br>
+
            <br><br>
  
<div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
              <img src=" https://static.igem.org/mediawiki/2017/c/c7/2017tongji_image_model_f9.jpeg" alt="NO DESCRIPTION" style="width:100%">
+
                <img src=" https://static.igem.org/mediawiki/2017/c/c7/2017tongji_image_model_f9.jpeg" alt="NO DESCRIPTION" style="width:100%">
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
                white:#f0f0f0 or black:#0F0F0F
+
                  white:#f0f0f0 or black:#0F0F0F
                NO DESCRIPTION
+
                  NO DESCRIPTION
              </div> -->
+
                </div> -->
 
             </div>
 
             </div>
<br>
+
            <br>
  
<div class="text" style=" text-align:center;">Figure9    The mating rate is 0.5</div>
+
            <div class="text" style=" text-align:center;">Figure9    The mating rate is 0.5</div>
<br><br>
+
            <br><br>
  
<div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
              <img src=" https://static.igem.org/mediawiki/2017/2/22/2017tongji_image_model_f10.jpeg" alt="NO DESCRIPTION" style="width:100%">
+
                <img src=" https://static.igem.org/mediawiki/2017/2/22/2017tongji_image_model_f10.jpeg" alt="NO DESCRIPTION" style="width:100%">
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
                white:#f0f0f0 or black:#0F0F0F
+
                  white:#f0f0f0 or black:#0F0F0F
                NO DESCRIPTION
+
                  NO DESCRIPTION
              </div> -->
+
                </div> -->
 
             </div>
 
             </div>
<br>
+
            <br>
  
<div class="text" style=" text-align:center;">Figure10    The mating rate is 0.6</div>
+
            <div class="text" style=" text-align:center;">Figure10    The mating rate is 0.6</div>
<br><br>
+
            <br><br>
  
<div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
              <img src=" https://static.igem.org/mediawiki/2017/6/6d/2017tongji_image_model_f11.jpeg" alt="NO DESCRIPTION" style="width:100%">
+
                <img src=" https://static.igem.org/mediawiki/2017/6/6d/2017tongji_image_model_f11.jpeg" alt="NO DESCRIPTION" style="width:100%">
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
                white:#f0f0f0 or black:#0F0F0F
+
                  white:#f0f0f0 or black:#0F0F0F
                NO DESCRIPTION
+
                  NO DESCRIPTION
              </div> -->
+
                </div> -->
 
             </div>
 
             </div>
<br>
+
            <br>
  
<div class="text" style=" text-align:center;">Figure11    The mating rate is 0.7</div>
+
            <div class="text" style=" text-align:center;">Figure11    The mating rate is 0.7</div>
<br><br>
+
            <br><br>
  
<div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
              <img src=" https://static.igem.org/mediawiki/2017/0/01/2017tongji_image_model_f12.jpeg" alt="NO DESCRIPTION" style="width:100%">
+
                <img src=" https://static.igem.org/mediawiki/2017/0/01/2017tongji_image_model_f12.jpeg" alt="NO DESCRIPTION" style="width:100%">
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
                white:#f0f0f0 or black:#0F0F0F
+
                  white:#f0f0f0 or black:#0F0F0F
                NO DESCRIPTION
+
                  NO DESCRIPTION
              </div> -->
+
                </div> -->
 
             </div>
 
             </div>
<br>
+
            <br>
  
<div class="text" style=" text-align:center;">Figure12    The mating rate is 0.8</div>
+
            <div class="text" style=" text-align:center;">Figure12    The mating rate is 0.8</div>
<br><br>
+
            <br><br>
  
<div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
              <img src=" https://static.igem.org/mediawiki/2017/7/7a/2017tongji_image_model_f13.jpeg" alt="NO DESCRIPTION" style="width:100%">
+
                <img src=" https://static.igem.org/mediawiki/2017/7/7a/2017tongji_image_model_f13.jpeg" alt="NO DESCRIPTION" style="width:100%">
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
                white:#f0f0f0 or black:#0F0F0F
+
                  white:#f0f0f0 or black:#0F0F0F
                NO DESCRIPTION
+
                  NO DESCRIPTION
              </div> -->
+
                </div> -->
 
             </div>
 
             </div>
<br>
+
            <br>
  
<div class="text" style=" text-align:center;">Figure13    The mating rate is 0.9</div>
+
            <div class="text" style=" text-align:center;">Figure13    The mating rate is 0.9</div>
<br><br>
+
            <br><br>
<div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
+
            <div class="demo-card-wide mdl-card mdl-shadow--2dp" style="width:100%; position: relative">
              <img src=" https://static.igem.org/mediawiki/2017/4/40/2017tongji_image_model_f14.jpeg" alt="NO DESCRIPTION" style="width:100%">
+
                <img src=" https://static.igem.org/mediawiki/2017/4/40/2017tongji_image_model_f14.jpeg" alt="NO DESCRIPTION" style="width:100%">
              <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
+
                <!-- <div class="mdl-card__supporting-text" style="font-size: 115%; position: absolute; top:0px; left:0px; color:#0F0F0F">
                white:#f0f0f0 or black:#0F0F0F
+
                  white:#f0f0f0 or black:#0F0F0F
                NO DESCRIPTION
+
                  NO DESCRIPTION
              </div> -->
+
                </div> -->
 
             </div>
 
             </div>
<br>
+
            <br>
  
<div class="text" style=" text-align:center;">Figure14    The mating rate is 1.0</div>
+
            <div class="text" style=" text-align:center;">Figure14    The mating rate is 1.0</div>
<br><br>
+
            <br><br>
  
  
In the figure above, the blue line represents the number of populations that have been added to the sterile male flies with male-male courtship, and the red line represents the number of populations that have been added to the sterile male flies. By comparison, the number of colonies after the addition of the sterile male flies with male-male courtship was lower in 15 days, as long as the mating rate was below 0.5. <br><br>
+
            In the figure above, the blue line represents the number of populations that have been added to the sterile male flies with male-male courtship, and the red line represents the number of populations that have been added to the sterile male flies. By comparison, the number of colonies after the addition of the sterile male flies with male-male courtship was lower in 15 days, as long as the mating rate was below 0.5.<br><br>
 
+
          </div>
</div>
+
          <div class="android-drawer-separator"></div>
      </div>
+
        </div>
 
+
  
 
         <!-- HERE ENDS THE PAGE -->
 
         <!-- HERE ENDS THE PAGE -->
Line 618: Line 656:
  
 
           <!-- <div class="mdl-mega-footer--bottom-section">
 
           <!-- <div class="mdl-mega-footer--bottom-section">
             <a class="and
+
             <a class="android-link android-link-menu mdl-typography--font-light" id="version-dropdown">
 +
              iGEM quicklinks
 +
              <i class="material-icons">arrow_drop_up</i>
 +
            </a>
 +
            <ul class="mdl-menu mdl-js-menu mdl-menu--top-left mdl-js-ripple-effect" for="version-dropdown">
 +
              <li class="mdl-menu__item" href="https://2017.igem.org/Main_Page">Home Page</li>
 +
              <li class="mdl-menu__item" href="https://twitter.com/iGEM">Twitter</li>
 +
              <li class="mdl-menu__item" href="https://www.instagram.com/igem_hq/">Instagram</li>
 +
              <li class="mdl-menu__item" href="https://www.facebook.com/iGEMFoundation/">Facebook</li>
 +
            </ul>
 +
            <a class="android-link android-link-menu mdl-typography--font-light" id="developers-dropdown">
 +
              Another expandable
 +
              <i class="material-icons">arrow_drop_up</i>
 +
            </a>
 +
            <ul class="mdl-menu mdl-js-menu mdl-menu--top-left mdl-js-ripple-effect" for="developers-dropdown">
 +
              <li class="mdl-menu__item" href="">Info</li>
 +
              <li class="mdl-menu__item" href="">Info 2</li>
 +
              <li class="mdl-menu__item" href="">More</li>
 +
              <li class="mdl-menu__item" href="">More2</li>
 +
            </ul>
 +
            <a class="android-link mdl-typography--font-light" href="">Blog</a>
 +
            <a class="android-link mdl-typography--font-light" href="">Privacy Policy</a>
 +
          </div> -->
 +
 
 +
        </footer>
 +
      </div>
 +
    </div>
 +
  </body>
 +
</html>

Revision as of 17:42, 28 October 2017


Tongji iGEM - Model
TongJi iGEM
TongJi iGEM
Model
Modelling allows us to estimate what is too complex to be determined experimentally at this stage.
expand_more

Background

Male-male courtship will undoubtedly affect the population growth. We believe that the method of releasing male-male courtship fruit flies can be used for population control, and be further extended to controlling more kinds of pest. We also found that the "sterilization" of mosquitoes, which do not hatch eggs, has been researched for population control. We think that the two aproaches may work more effectively when used together, so we built a mathematical model to validate our idea.

Theory

First, we set the program with the thoughts of "sterilization" mosquitoes as a1. We can assume that the number of male mosquitoes and female mosquitoes in the wild environment is set to 1, and the number of male mosquitoes is 5, so the number of offspring is reduced to 1/6. With the universality hypothesis, the number of wild-type male mosquitoes and female mosquitoes in the environment is 1, and the amount of male modified mosquitoes is y, that is, the male modified mosquitoes released are as much as y times of the wild-type mosquitoes, we will use this parameter later. Then supposing that the proportion of all survivors is p(a1), and we can get: $$ p(a_1) = \frac{1}{1+y} \qquad [1] $$ Therefore we tried to apply this idea to our project, to make our modified fruit flies not only having the pursuit of the same characteristics but also making the next generations which cannot be hatched. We set this program as '''a1'''. Assuming that the number of wild-type male and female fruit flies in the environment is 1, the amount of fruit fly is converted to y. According to the results of the behavioral experiments, the modified fruit flies have the same probabilities to male and female, The ratio of fruit flies to normal hatching p(a1) is: $$ p(a_2) = \frac{1}{1+\frac{y}{x}} \qquad [2] $$ It can be found that the "sterilization" individuals in previous projects are superior to our male-male courtship individuals in terms of the inhibition of the number of offspring populations. However, in our model, each female flies are mated when the ratio of male to female is at 1: 1. Suppose the mating rate is k, so k=1. But k should be, in the natural situation, less than 1. When increasing the number of male fruit flies, the ratio k of mating female flies to the total number of females increased. It changes into k’: $$ k' = k \cdot (1+y) \qquad [3] $$ But we should make a discussion of this formula. When k*(1+y)>1, we make k’=1; when k*(1+y)<=1, making k’=k*(1+y). $$ k'= \begin{cases} k \cdot (1+y) \qquad k \cdot (1+y) \le 1 \\ 1 \quad \qquad \qquad k \cdot (1+y) \gt 1 \\ \end{cases} \qquad [4] $$ So p(a1) can be worked out: $$ p(a_1)= \begin{cases} k \qquad \qquad k \cdot (1+y) \le 1 \\ \frac{1}{1+y} \quad \qquad k \cdot (1+y) \gt 1 \\ \end{cases} \qquad [5] $$ In our project’s model, we assume that among the male fruit flies with the number of y, half sterile male flies that have male-male courtship, and the number of modified flies who chases modified flies is x. And we can also assume that half of these flies are active. And among the sterile flies with male-male courtship, the number of flies who is active is (y/2-x). The pursuer the two different flies chose is (y/2-x/2) and (1+y/2) respectively. So we can conclude a equation as follow $$ \frac {\frac{x}{2}} {\frac{y}{2}-x} = \frac {\frac{y}{2}-\frac{x}{2}} {1+\frac{y}{2}} \qquad [6] $$ By Solving equation, we can know that: $$ x = \frac {2y+1- \sqrt{2y^2+4y+1}} {2} \qquad [7] $$ After release sterile male flies with male-male courtship, the ratio of mated female flies changes to: $$ k' = \frac {k \cdot (1+ \frac{y}{2})} {1+ \frac{y}{2}-x} \qquad [8] $$ So p(a1) can be worked out: $$ p(a_2)= \begin{cases} \frac{k}{1+ \frac{y}{2}-x} \quad \qquad \frac{k \cdot (1+ \frac{y}{2})}{1+ \frac{y}{2}-x} \le 1 \\ \frac{1}{1+ \frac{y}{2}} \qquad \qquad \frac{k \cdot (1+ \frac{y}{2})}{1+ \frac{y}{2}-x} \gt 1 \\ \end{cases} \qquad [9] $$ As we can see, although the radio of offspring that was incubated normally increased a little than previous research, which is a disadvantage in population control, but if we regard the female flies’ crossover rate less then 1, among the offspring of sterile flies with male-male courtship, the number of flies that can be incubated normally will decrease, which can control the population in to some extent. And the effect of this way is better than releasing sterile male flies.

As simulation the change of population in one day is not enough to prove that this way can control the population. So we decided to simulation the change of population in fifteen day. In order to achieve this goal, we will use Leslie matrix.
Leslie Matrix
In 1945, Leslie P H. introduced a mathematical method to predict the age structure and population through time from the age structure of the initial population.

Depending on the physiological characteristics of each individual, the maximum life age is divided into M groups. The objective it to find how the age distribution evolves. The time starts from t=0 and evolves in steps (t=0, 1, 2...), and the interval is the same as that of the age group.

Suppose that, at the beginning (t=0), the number of individuals in the I age group was ni(0), i= 1, 2,... m. so the age distribution vector is: $$ \overrightarrow n(0) = [n_1(0), n_2(0), …, n_m(0)]^T $$ The reproductive rate of the I age group is fi(0) ,i= 1, 2,... M;
The survival rate is Si(>0), i= 1, 2,... m - 1;
Between two periods, there is an iterative relationship between the number of individuals in each age group ni: $$ \begin{cases} n_1 (t + 1) = \sum_{i=1}^m f_i \cdot n_i(t) = f_i \cdot n_1 (t) + f_2 \cdot n_2(t) + … + f_m \cdot n_m (t) \\ n_i (t + 1) = S_{i-1} \cdot n_{i-1}(t) \qquad i = 2, 3, …,m \\ \end{cases} $$ Note 1: In f_i new individuals who have been born within the period of t but have not lived to the (t+ 1) period have been deducted.
Note 2: Usually in the population of bisexual reproduction, only the number of females is counted.

In matrix form: $$ L=\begin{bmatrix}{} f_1 & f_2 & ... & f_{m-1} & f_m\\ S_1 & 0 & 0 & 0 & 0\\ 0 & S_2 & 0 & 0 & 0\\ 0 & 0 & ... & 0 & 0\\ 0 & 0 & 0 & S_{m-1} & 0 \end{bmatrix} $$ It's called the Leslie matrix.
Since \( \overrightarrow n(t) = [n_1(t), n_2(t), …, n_m(t)]^T \) , then equation [1] can be expressed as $$ \overrightarrow n(t+1) = \overrightarrow n(t+1) L $$ So if L and n(0) are known, for any t>0: $$ \overrightarrow n(t) = \overrightarrow n(0) L^t $$

Results and Discussion

1. In a1, the results of p are shown in the following table:

Table 1
NO DESCRIPTION

Figure1


2. In a1, the results of p are shown in the following table:

Table 2
NO DESCRIPTION

Figure2


3. The results of p(a1)-p(a1) are shown in the following table:

Table 3
NO DESCRIPTION

Figure3


It can be seen that in the case of the small mating rate, the inhibition effect of releasing sterile male flies with male-male courtship is more obvious to reducing population quantity, which is consistent with the purpose of our modeling.

4. y=5, the effect of different mating rates k on the results of p in the two methods is as follows:

NO DESCRIPTION

Figure4


In the figure above, the yellow line represents the sterile male flies with male-male courtship, and the purple line represents the sterile male flies. We can see that when the mating rate is less than 0.7, releasing sterile male flies with male-male courtship cause more obvious effect.

5. y=5, the effect of different mating rates k on the final population in 15 days is as follows:

NO DESCRIPTION

Figure5 The mating rate is 0.1


NO DESCRIPTION

Figure6 The mating rate is 0.2


NO DESCRIPTION

Figure7 The mating rate is 0.3


NO DESCRIPTION

Figure8 The mating rate is 0.4


NO DESCRIPTION

Figure9 The mating rate is 0.5


NO DESCRIPTION

Figure10 The mating rate is 0.6


NO DESCRIPTION

Figure11 The mating rate is 0.7


NO DESCRIPTION

Figure12 The mating rate is 0.8


NO DESCRIPTION

Figure13 The mating rate is 0.9


NO DESCRIPTION

Figure14 The mating rate is 1.0


In the figure above, the blue line represents the number of populations that have been added to the sterile male flies with male-male courtship, and the red line represents the number of populations that have been added to the sterile male flies. By comparison, the number of colonies after the addition of the sterile male flies with male-male courtship was lower in 15 days, as long as the mating rate was below 0.5.

That's it!

This page has sadly ended, if you want you can go back

Home chevron_right

Or follow these links for more awesomeness!

Team

Meet the people behind the project

Project

Here you can find the project details

Parts

Parts are the heart of iGEM

Attributions

Many people are involved in the project