Difference between revisions of "Team:NCTU Formosa/Disease Occurrence Model"

Line 17: Line 17:
 
     margin: 0;
 
     margin: 0;
 
     padding: 0;
 
     padding: 0;
    height: 100vh;
 
 
     overflow-x: hidden;
 
     overflow-x: hidden;
 +
    height: 100vh;
 
}
 
}
  
Line 26: Line 26:
 
}
 
}
  
p{
+
#fut{
 +
background: white;
 +
width: 100vw;
 +
height: 50px;
 +
}
 +
 
 +
.line{
 +
position: relative;
 +
left: 10vw;
 +
top: 10vmax;
 +
}
 +
 
 +
p {
 
     text-align: justify;
 
     text-align: justify;
 
     font-size: 1.3em !important;
 
     font-size: 1.3em !important;
 
     font-family: Arial, sans-serif;
 
     font-family: Arial, sans-serif;
 +
    margin: 10px 0 0;
 
}
 
}
  
#fut{
+
@font-face {
background: white;
+
  font-family: neo_latina;
width: 100vw;
+
  src: url(https://static.igem.org/mediawiki/2017/4/46/Neo-latina-demo-FFP.ttf);
height: 200px;
+
 
}
 
}
  
.subtitle{
+
.subtitle>h6{
     height: 35px;
+
     font-family: neo_latina;
     max-width: 90%;
+
     font-size: 3.9em;
 
     position: relative;
 
     position: relative;
     left: 10vw;
+
     left: 25px;
 
     margin-top: 50px;
 
     margin-top: 50px;
 
     margin-bottom: 10px;
 
     margin-bottom: 10px;
 +
    line-height: 1em;
 +
}
 +
 +
.subtitle>h5{
 +
    font-family: neo_latina;
 +
    font-size: 1.95em;
 +
    position: relative;
 +
    left: 50px;
 +
    margin-top: -10px;
 +
    margin-bottom: 10px;
 +
    line-height: 1em;
 +
}
 +
 +
 +
.dsocm_content{
 +
    margin: 10vh 10vw 0vh;
 
}
 
}
 
/*----------------------------------------------------------------------------*/
 
/*----------------------------------------------------------------------------*/
Line 174: Line 202:
 
.hide>img{
 
.hide>img{
 
     margin-bottom: 50px;
 
     margin-bottom: 50px;
 +
}
 +
/*----------------------------------------------------------------------------*/
 +
span>a:link {
 +
    color: #85CFEA;
 
}
 
}
  
 +
span>a:visited {
 +
    color: #85CFEA;
 +
}
 +
 +
span>a:hover {
 +
    color: blue;
 +
}
 +
 +
span>a:active {
 +
    color: blue;
 +
}
 +
 +
span>a{
 +
    text-decoration: none;
 +
}
  
  
Line 216: Line 263:
  
 
</script>
 
</script>
 +
 +
    <script src="http://cdn.mathjax.org/mathjax/latest/MathJax.js" type="text/javascript">
 +
        MathJax.Hub.Config({
 +
            extensions: ["tex2jax.js", "TeX/AMSmath.js", "TeX/AMSsymbols.js"],
 +
            jax: ["input/TeX", "output/HTML-CSS"],
 +
            tex2jax: {
 +
                inlineMath: [
 +
                    ['$', '$'],
 +
                    ["\\(", "\\)"]
 +
                ],
 +
                displayMath: [
 +
                    ['$$', '$$'],
 +
                    ["\\[", "\\]"]
 +
                ],
 +
            },
 +
            "HTML-CSS": {
 +
                availableFonts: ["TeX"]
 +
            }
 +
        });
 +
    </script>
 
<!----------------------------------------------------------------------------->
 
<!----------------------------------------------------------------------------->
  
Line 239: Line 306:
  
 
         <!----------------------------------------------------------------------------->
 
         <!----------------------------------------------------------------------------->
         <img id="dsocm_pic" class="subtitle" src="https://static.igem.org/mediawiki/2017/0/0e/HpAg_study.png">
+
         <div class="subtitle">
 +
            <h6>Prediction Modeling</h6></div>
  
 
         <div class="dsocm_dsocm">
 
         <div class="dsocm_dsocm">
Line 265: Line 333:
 
                 <p>
 
                 <p>
 
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;For the disease occurrence prediction modeling, NCTU_Formosa built a model predicting the diseases relating to everyday weather information that was based on the neural network. There were two kinds of data in our predict
 
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;For the disease occurrence prediction modeling, NCTU_Formosa built a model predicting the diseases relating to everyday weather information that was based on the neural network. There were two kinds of data in our predict
                     system, which were the recorded diseases happening data that were collected from the government agency and the weather data from the <a href="http://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp" target="_blank">Central Meteorological Bureau's website</a>Central
+
                     system, which were the recorded diseases happening data that were collected from the government agency and the weather data from the <span><a href="http://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp" target="_blank">Central Meteorological Bureau's website</a></span>                    Central Meteorological Bureau's website that corresponded to the data forward. Then, we combined these two, and then deleted the recorded data that had no weather data to match with.
                    Meteorological Bureau's website that corresponded to the data forward. Then, we combined these two, and then deleted the recorded data that had no weather data to match with.
+
 
                 </p>
 
                 </p>
  
Line 289: Line 356:
 
                 </p>
 
                 </p>
  
                 <p>一個公式</p>
+
                 <div class="latex">$$ f(x_i) = max(x_i) $$</div>
  
 
                 <p>
 
                 <p>
Line 296: Line 363:
 
                 </p>
 
                 </p>
  
                 <p>一張圖</p>
+
                 <p>一張不知道是什麼的圖</p>
  
 
                 <p>
 
                 <p>
Line 306: Line 373:
 
                 </p>
 
                 </p>
  
                 <p>一個公式</p>
+
                 <div class="latex">$$ {\displaystyle \sigma (\mathbf {z} )_{j}={\frac {e^{z_{j}}}{\sum _{k=1}^{K}e^{z_{k}}}}} $$</div>
  
 
                 <p>
 
                 <p>
Line 323: Line 390:
 
                 </p>
 
                 </p>
  
                 <p>一個公式</p>
+
                 <div class="latex">$$ H_{y'}(y) = - \sum_{i} y_{i}^{'}log(y_{i}) $$</div>
  
 
                 <p>
 
                 <p>
Line 333: Line 400:
 
                 </p>
 
                 </p>
  
                 <p>一張圖片</p>
+
                 <p>這裡有一張圖片,請補上</p>
  
 
                 <p>
 
                 <p>
Line 344: Line 411:
  
 
         <!----------------------------------------------------------------------------->
 
         <!----------------------------------------------------------------------------->
         <img id="spgnm_pic" class="subtitle" src="https://static.igem.org/mediawiki/2017/0/0e/HpAg_study.png">
+
         <div class="subtitle">
 +
            <h6>Spore Germination Modeling</h6></div>
  
 
         <div class="dsocm_spgnm">
 
         <div class="dsocm_spgnm">
Line 365: Line 433:
  
 
             <div class="hide2">
 
             <div class="hide2">
 +
 +
                <h1>Spore Germination Rate</h1>
  
 
                 <p>
 
                 <p>
Line 372: Line 442:
  
 
                 <p>
 
                 <p>
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;At first, we used the spore germination data on the research papers to fit out the functions. It found out that the spore germination rate based on temperature can be fitted in a cubic equation.
+
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;At first, we used the spore germination data on the research papers to fit out the functions.
 
                 </p>
 
                 </p>
  
                 <p>一個方程式</p>
+
                 <div>
 +
                    <h2>Spore germination based on temperature [1]:</h2>
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(1) Myce-liophthora thermophila’s spore germination rate based on temperature:
 +
                    </p>
 +
 
 +
                    <div class="latex">$$ y = 0.0004x^3 - 0.0132x^2 + 4.0447x -24.746 $$</div>
 +
 
 +
                    <img src="https://static.igem.org/mediawiki/2017/e/e0/Dsocm_photo1.png" width="60%" style="display: block; margin: auto;">
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) Aspergillus niger’s spore germination rate based on temperature:
 +
                    </p>
 +
 
 +
                    <div class="latex">$$ y = 0.0326x^3 - 4.0593x^2 + 160.2x - 1943.7 $$</div>
 +
 
 +
                    <img src="https://static.igem.org/mediawiki/2017/2/21/Dsocm_photo2.png" width="60%" style="display: block; margin: auto;">
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(3) P. oryzae’s spore germination rate based on temperature[2]:
 +
                    </p>
 +
 
 +
                    <div class="latex">$$ y = 0.06x^3 - 4.389x^2 + 106.86x - 774.66 $$</div>
 +
 
 +
                    <img src="https://static.igem.org/mediawiki/2017/f/f5/Dsocm_photo3.png" width="60%" style="display: block; margin: auto;">
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(4) Diplodia corticola’s spore germination rate based on temperature[3]:
 +
                    </p>
 +
 
 +
                    <div class="latex">$$ y = -0.0041x^3 + 0.0169x^2 + 7.1531x - 32.071 $$</div>
 +
 
 +
                    <img src="https://static.igem.org/mediawiki/2017/8/8c/Dsocm_photo4.png" width="60%" style="display: block; margin: auto;">
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;As results, we found out that the spore germination rate based on temperature can be fitted in a cubic equation
 +
                    </p>
 +
 
 +
                    <div class="latex">$$ f_1(x) = ax^3 + bx^2 + cx + d $$</div>
 +
                </div>
 +
 
 +
                <div>
 +
                    <h2>Spore germination based on relative humidity:</h2>
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(1) Aspergillus niger’s spore germination rate based on relative humidity[4]:
 +
                    </p>
 +
 
 +
                    <div class="latex">$$ y = 352.38x - 254.14 $$</div>
 +
 
 +
                    <img src="https://static.igem.org/mediawiki/2017/7/7d/Dsocm_photo5.png" width="60%" style="display: block; margin: auto;">
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) Pseudocercospora’s spore germination rate based on relative humidity[5]:
 +
                    </p>
 +
 
 +
                    <div class="latex">$$ y = 0.1071x - 10.165 $$</div>
 +
 
 +
                    <img src="https://static.igem.org/mediawiki/2017/9/9e/Dsocm_photo6.png" width="60%" style="display: block; margin: auto;">
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;As results, we found out the spore germination rate based on the relative humidity in a linear equation.
 +
                    </p>
 +
 
 +
                    <div class="latex">$$ f_2(x) = ax+b $$</div>
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Later, we considered the two equations as independent events and multiplied them to form our general fungal spore germination model. Then we conducted experiments to determine the coefficients and verification.
 +
                    </p>
 +
 
 +
                    <div class="latex">$$ f_1 \times f_2 $$</div>
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;In other words, Just need the temperature and humidity conditions, we can calculate the spore germination in that environment.
 +
                    </p>
 +
                </div>
 +
 
 +
                <div>
 +
                    <h2>Experiment method:</h2>
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The experiment part was divided into two part:
 +
                    </p>
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(1) Fix humidity, change temperature:
 +
                    </p>
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Remove the spores from fungal plate by Distillation-Distillation H2O to made the spore suspension solution, then put the solution in concave glass slides. Later, put it into temperature and humidity control box. The humidity
 +
                        was set at 100%, the temperature was set from 10 to 30 Celsius degrees and been tested once every 5 degrees.
 +
                    </p>
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) Fix temperature, change humidity:
 +
                    </p>
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Remove the spores from fungal plate by Distillation-Distillation H2O to made the spore suspension solution, then put the solution in concave glass slides. Later, put it into temperature and humidity control box. Temperature
 +
                        was fixed at 25 Celsius degrees, the humidity was set from 80% to 100% and been tested once every 5 percents.
 +
                    </p>
 +
 
 +
                    <p>
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Also, we had test
 +
                    </p>
 +
 
 +
                    <p>這裡缺一張圖</p>
 +
                </div>
 +
 
 +
                <h1>Experiment result:</h1>
 +
 
 +
                <img src="https://static.igem.org/mediawiki/2017/5/59/Dsocm_photo9.png" width="80%" style="display: block; margin: auto;">
  
 
                 <p>
 
                 <p>
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;And the spore germination rate based on the humidity can be fitted in a linear equation.
+
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The standard of spore germination
 
                 </p>
 
                 </p>
 
                <p>一個方程式</p>
 
  
 
                 <p>
 
                 <p>
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Later, we considered the two equations as independent events and multiplied them to form our general fungal spore germination model. Then we conducted experiments to determine the coefficients and verification.
+
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;following pictures are the Illustration of whether the spore germinate or not.
 
                 </p>
 
                 </p>
  
                 <p>一個方程式</p>
+
                 <div style="position: relative; left: 10%; margin-top: 50px;">
 +
                    <img src="https://static.igem.org/mediawiki/2017/f/f2/Dsocm_photo7.jpeg" width="40%">
 +
                    <img src="https://static.igem.org/mediawiki/2017/7/75/Dsocm_photo8.png" width="40%">
 +
                    <p>(Left)10 Celsius degrees and 100% relative humidity (9 hours)</p>
 +
                    <p>(Right)25 Celsius degrees and 100% relative humidity (9 hours)</p>
  
                 <h1>Method:</h1>
+
                 </div>
  
                 <h3>1. Fix humidity, change temperature:</h3>
+
                 <p>
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(1) Fixed relative humidity in 100%
 +
                </p>
  
 
                 <p>
 
                 <p>
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Washed the spores from fungal plate by water(DDW), then put the spore (suspension) water in concave glass slides. Later, put it into temperature and humidity control box. The humidity was set at 100%, the temperature was
+
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The effective range of temperature is 10 to 30 Celsius degrees.
                    set from 10 to 30 Celsius degrees and been tested once every 5 degrees.
+
 
                 </p>
 
                 </p>
  
                 <h3>2. Fix temperature, change humidity</h3>
+
                 <p>這裡有一張圖</p>
  
 
                 <p>
 
                 <p>
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Washed the spores from fungal plate by water(DDW), then put the spore (suspension) water in concave glass slides. Later, put it into temperature and humidity control box. Temperature was fixed at 25 Celsius degrees, the humidity
+
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Botrytis cinerea temperature &amp; spore germination(9 hours) formula:
                    was set from 80% to 100% and been tested once every 5 percents.
+
 
                 </p>
 
                 </p>
  
                 <p>一個圖表</p>
+
                 <p>這裡有一個公式</p>
  
 
                 <p>
 
                 <p>
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;By modeling combined with the IoT system, two aspects of disease prediction are provided. Respectively:
+
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2) Fixed temperature in 20 Celsius
 
                 </p>
 
                 </p>
  
 
                 <p>
 
                 <p>
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;IoT immediately detect temperature and humidity (per hour detection), and we put the temperature and humidity condition that IoT detected into the formula we developed to calculate spore germination. If the spore germination
+
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;According to our experiment,Botrytis cinerea’s spore germination rate based on relative humidity:f2=316.88x-216.88f2=233.86x-160.06The effective range of relative humidity is 70%~100%, we use linear translation to let the
                    rate exceeds certain value, we will inform the user that the disease may occur.(How to develop see below)
+
                    spore germination in 100% relative humidity is also 100%.
 
                 </p>
 
                 </p>
 +
 +
                <img src="https://static.igem.org/mediawiki/2017/9/97/Dsocm_photo10.png" width="60%" style="display: block; margin: auto;">
 +
 +
                <h1>Combined with IoTtalk</h1>
  
 
                 <p>
 
                 <p>
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;If both of the predicted results are above the threshold, the user will be advised to spray the pesticide. The data send back to IoT system simultaneously and the user can decide whether to automatically spray.
+
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;IoT immediately detects temperature and humidity (per hour detection), and we put the temperature and humidity condition that IoT detected into the formula we developed to calculate spore germination. If the spore germination
 +
                    rate exceeds a certain value, we will inform the user that the disease may occur.
 
                 </p>
 
                 </p>
  
 
                 <p>
 
                 <p>
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;In other words, Just need the temperature and humidity conditions, we can calculate the spore germination in that environment.
+
                     &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;If both of the predicted results are above the threshold, the user will be advised to spray the pesticide. The data sent back to IoT system simultaneously and the user can decide whether to automatically spray.
 
                 </p>
 
                 </p>
  
Line 428: Line 617:
 
                 </p>
 
                 </p>
  
                 <h1>Result</h1>
+
                 <h1>Reference</h1>
  
                 <h3>Formula fit result:</h3>
+
                 <p><small>[1]H. HASSOUNI1, et al. COMPARATIVE SPORE GERMINATION OF FILAMENTOUS FUNGI ON SOLID STATE FERMENTATION UNDER DIFFERENT CULTURE CONDITIONS. 2006</small></p>
 
+
                <p><small>[2]Reference:Shivani R, Top 6 Factors Influencing Disease Cycle of Rice | Plant Disease</small></p>
                 <h3>Data found from paper:</h3>
+
                 <p><small>[3]Reference:José R. Úrbez-Torres, Effect of Temperature on Conidial Germination of Botryosphaeriaceae Species Infecting Grapevines, 2010</small></p>
 
+
                 <p><small>[4]Awad M. Abdel-Rahim, Hassan A. Arbab, Factors affecting spore germination in Aspergillus niger, 1985</small></p>
                 <p>一張圖片</p>
+
                 <p><small>[5]L. H. Jacome, W. Schuh, and R. E. Stevenson Effect of Temperature and Relative Humidity on Germination and Germ Tube Development of Mycosphaerella fijiensis var. difformis, 1991</small></p>
 
+
 
+
 
+
                 <img src="#" width="60%" style="display:block; margin:auto;">
+
  
 
                 <div><img class="hide2_pic" src="https://static.igem.org/mediawiki/2017/c/cb/Ptp_show.png" style="display:block; margin:auto;"></div>
 
                 <div><img class="hide2_pic" src="https://static.igem.org/mediawiki/2017/c/cb/Ptp_show.png" style="display:block; margin:auto;"></div>
Line 453: Line 638:
  
 
</body>
 
</body>
 
 
</html>
 
</html>
  
 
{{NCTU_Formosa/Footer}}
 
{{NCTU_Formosa/Footer}}

Revision as of 22:29, 29 October 2017

navigation

NCTU_Formosa: Disease Occurrence Model
Prediction Modeling

     In order to cure the fungal diseases in reality, we used the method called Convolutional Neural Network(CNN) to catch the weather patterns that was hard to be recognized by humans. With this disease occurrence model, we can get the daily possibility of disease occurrences. Also, we set up a warning and auto-spraying system by combining the model with the IoTtalk to apply peptides into farmlands.

  1. Datasets--the past fungal diseases data and the weather data
  2. Convolutional Neural Network
  3. Softmax function
  4. How to define our model cost function and the optimizer
  5. Connection to the IoTtalk system

     For the disease occurrence prediction modeling, NCTU_Formosa built a model predicting the diseases relating to everyday weather information that was based on the neural network. There were two kinds of data in our predict system, which were the recorded diseases happening data that were collected from the government agency and the weather data from the Central Meteorological Bureau's website Central Meteorological Bureau's website that corresponded to the data forward. Then, we combined these two, and then deleted the recorded data that had no weather data to match with.

     In reality, the spore germination needs some specific weather conditions. Also, the plants may be influenced by the change of weather and become weak. However, this relationship is hard to be recognized by humans. Therefore, we used Convolutional Neural Network(CNN) as our method to catch the weather patterns.

Convolutional Neural Network(CNN)

     Convolutional Neural Network(CNN) is a powerful network that can automatically recognize the patterns of the features in a period of time, just like the favorite weather change to the fungal diseases in the life cycle. In other words, it means it can recognize the pathogen life cycle in a specific time and mark them out because life cycle’s patterns can happen everywhere over a period of time. For example, our model used weather data for tje past two weeks as the model input, and the weather patterns can be found in this 14-day data.

     After the CNN layer, the weather features then converted to weather change features, then a max pooling layer was added to filter some noises after the CNN layer. Weather patterns that caused diseases wouldn’t change in a short time, so the function of max pooling was to only return the maximum values in the filter.

$$ f(x_i) = max(x_i) $$

     For example: if the input array is [2,5,1,7,0,4] and the max pooling filter size is 2. When the filter step(distance the filter moves) is 1, the first max pooling output will be max(2,5)=5, and the second output is max(5,1) =5 and so on.

一張不知道是什麼的圖

     Finally, after using the full connection layer to convert the max pooling output into high dim space, the model then classified them into two classes, negative(disease will not happen) and positive(disease will happen).

     However, the network output was (a number that) hard to be realized by humans , so we used the softmax function to transform it into the diseases happening probability. Here is the formula of the softmax function:

$$ {\displaystyle \sigma (\mathbf {z} )_{j}={\frac {e^{z_{j}}}{\sum _{k=1}^{K}e^{z_{k}}}}} $$

     So on, the model output can be easily realized by machines and humans, and next let’s talk about how we defined our model cost function and the optimizer.

     We chose the cross-entropy as the network cost function because it performed well that the exclusion classification mission. Here this the formula of cross-entropy.

     Suppose His a cross-entropy function, y'i is the real label, and the yiis the network prediction output, the cost is

$$ H_{y'}(y) = - \sum_{i} y_{i}^{'}log(y_{i}) $$

     Parameters of the Neural Network were being optimized by Adam optimizer, which is a moat commonly used ways to optimize the network.

     After training, the model will be tested by independence test data, and the result was shown below.

這裡有一張圖片,請補上

     For the use in reality, the network would connect to our IoTtalk system, giving the user daily warning from the diseases happening.

Spore Germination Modeling

     To predict the occurrence of diseases more effectively and timely, we made the spore germination rate. According to the researches, we first fitted out a linear equation for the spore germination rate base on the humidity and a cubic equation for the spore germination rate base on the temperature. By multiply them, we get the general model for the spore germination. At last, the model was combined to IoTtalk to apply peptides into farmlands.

  1. Fitted out the equation with researches and get the general spore germination rate model.
  2. Conducted experiments as verification and determine the coefficients.
  3. Result

Spore Germination Rate

     Because we found out that the humidity affected the spore germination the most and the temperature secondly. Therefore, we wanted to found the relationships between temperature with the spore germination rate and the relationships between humidity with the spore germination rate in different fungal species and tried to make a general model that can fit in every fungal species.

     At first, we used the spore germination data on the research papers to fit out the functions.

Spore germination based on temperature [1]:

     (1) Myce-liophthora thermophila’s spore germination rate based on temperature:

$$ y = 0.0004x^3 - 0.0132x^2 + 4.0447x -24.746 $$

     (2) Aspergillus niger’s spore germination rate based on temperature:

$$ y = 0.0326x^3 - 4.0593x^2 + 160.2x - 1943.7 $$

     (3) P. oryzae’s spore germination rate based on temperature[2]:

$$ y = 0.06x^3 - 4.389x^2 + 106.86x - 774.66 $$

     (4) Diplodia corticola’s spore germination rate based on temperature[3]:

$$ y = -0.0041x^3 + 0.0169x^2 + 7.1531x - 32.071 $$

     As results, we found out that the spore germination rate based on temperature can be fitted in a cubic equation

$$ f_1(x) = ax^3 + bx^2 + cx + d $$

Spore germination based on relative humidity:

     (1) Aspergillus niger’s spore germination rate based on relative humidity[4]:

$$ y = 352.38x - 254.14 $$

     (2) Pseudocercospora’s spore germination rate based on relative humidity[5]:

$$ y = 0.1071x - 10.165 $$

     As results, we found out the spore germination rate based on the relative humidity in a linear equation.

$$ f_2(x) = ax+b $$

     Later, we considered the two equations as independent events and multiplied them to form our general fungal spore germination model. Then we conducted experiments to determine the coefficients and verification.

$$ f_1 \times f_2 $$

     In other words, Just need the temperature and humidity conditions, we can calculate the spore germination in that environment.

Experiment method:

     The experiment part was divided into two part:

     (1) Fix humidity, change temperature:

     Remove the spores from fungal plate by Distillation-Distillation H2O to made the spore suspension solution, then put the solution in concave glass slides. Later, put it into temperature and humidity control box. The humidity was set at 100%, the temperature was set from 10 to 30 Celsius degrees and been tested once every 5 degrees.

     (2) Fix temperature, change humidity:

     Remove the spores from fungal plate by Distillation-Distillation H2O to made the spore suspension solution, then put the solution in concave glass slides. Later, put it into temperature and humidity control box. Temperature was fixed at 25 Celsius degrees, the humidity was set from 80% to 100% and been tested once every 5 percents.

     Also, we had test

這裡缺一張圖

Experiment result:

     The standard of spore germination

     following pictures are the Illustration of whether the spore germinate or not.

(Left)10 Celsius degrees and 100% relative humidity (9 hours)

(Right)25 Celsius degrees and 100% relative humidity (9 hours)

     (1) Fixed relative humidity in 100%

     The effective range of temperature is 10 to 30 Celsius degrees.

這裡有一張圖

     Botrytis cinerea temperature & spore germination(9 hours) formula:

這裡有一個公式

     (2) Fixed temperature in 20 Celsius

     According to our experiment,Botrytis cinerea’s spore germination rate based on relative humidity:f2=316.88x-216.88f2=233.86x-160.06The effective range of relative humidity is 70%~100%, we use linear translation to let the spore germination in 100% relative humidity is also 100%.

Combined with IoTtalk

     IoT immediately detects temperature and humidity (per hour detection), and we put the temperature and humidity condition that IoT detected into the formula we developed to calculate spore germination. If the spore germination rate exceeds a certain value, we will inform the user that the disease may occur.

     If both of the predicted results are above the threshold, the user will be advised to spray the pesticide. The data sent back to IoT system simultaneously and the user can decide whether to automatically spray.

     When the germination rate exceeds the threshold, we will advise the user to spray the corresponding peptide.

Reference

[1]H. HASSOUNI1, et al. COMPARATIVE SPORE GERMINATION OF FILAMENTOUS FUNGI ON SOLID STATE FERMENTATION UNDER DIFFERENT CULTURE CONDITIONS. 2006

[2]Reference:Shivani R, Top 6 Factors Influencing Disease Cycle of Rice | Plant Disease

[3]Reference:José R. Úrbez-Torres, Effect of Temperature on Conidial Germination of Botryosphaeriaceae Species Infecting Grapevines, 2010

[4]Awad M. Abdel-Rahim, Hassan A. Arbab, Factors affecting spore germination in Aspergillus niger, 1985

[5]L. H. Jacome, W. Schuh, and R. E. Stevenson Effect of Temperature and Relative Humidity on Germination and Germ Tube Development of Mycosphaerella fijiensis var. difformis, 1991

Untitled Document