Difference between revisions of "Team:NCTU Formosa/Improve"

Line 476: Line 476:
 
                     <br>
 
                     <br>
 
                     <br>
 
                     <br>
                     <img src="https://static.igem.org/mediawiki/2017/0/02/Improve_XP.png"  width="60%" style="display: block; margin: auto">
+
                     <img src="https://static.igem.org/mediawiki/2017/0/02/Improve_XP.png"  width="40%" style="display: block; margin: auto">
 
                      
 
                      
 
                     <br>
 
                     <br>
Line 486: Line 486:
 
                     <br>
 
                     <br>
  
                     <img src="https://static.igem.org/mediawiki/2017/e/e8/Improve_SP.png"  width="60%" style="display: block; margin: auto">
+
                     <img src="https://static.igem.org/mediawiki/2017/e/e8/Improve_SP.png"  width="40%" style="display: block; margin: auto">
 
                     <p style="text-align: center;">
 
                     <p style="text-align: center;">
 
                     Fig.4 The electrophoresis of BBa_J23119 and BBa_J23109.
 
                     Fig.4 The electrophoresis of BBa_J23119 and BBa_J23109.
Line 493: Line 493:
 
                     <br>
 
                     <br>
  
                     <img src="https://static.igem.org/mediawiki/2017/4/4a/Com_fMt.png"  width="60%" style="display: block; margin: auto">
+
                     <img src="https://static.igem.org/mediawiki/2017/4/4a/Com_fMt.png"  width="80%" style="display: block; margin: auto">
 
                     <p style="text-align: center;">
 
                     <p style="text-align: center;">
 
                     Fig.4 The electrophoresis of BBa_J23119 and BBa_J23109.
 
                     Fig.4 The electrophoresis of BBa_J23119 and BBa_J23109.
Line 512: Line 512:
 
                     </p>
 
                     </p>
 
<br>
 
<br>
                     <img src="https://static.igem.org/mediawiki/2017/9/93/Improve_fMt_table1.png"  width="60%" style="display: block; margin: auto">
+
                     <img src="https://static.igem.org/mediawiki/2017/9/93/Improve_fMt_table1.png"  width="80%" style="display: block; margin: auto">
  
 
                     <p style="text-align: center;">
 
                     <p style="text-align: center;">
Line 535: Line 535:
 
                     </p>
 
                     </p>
  
                     <img src="https://static.igem.org/mediawiki/2017/9/93/Improve_fMt_table1.png"  width="60%" style="display: block; margin: auto">
+
                     <img src="https://static.igem.org/mediawiki/2017/9/93/Improve_fMt_table1.png"  width="80%" style="display: block; margin: auto">
 
<br>
 
<br>
 
<br>
 
<br>

Revision as of 00:05, 1 November 2017

navigation

NCTU_Formosa: Project Improvement
Improvement - Finding more pest-resistant candidates for former NCTU_Formosa
- Using the same method SCM to build pest-resistant peptide prediction system

     To improve the project of NCTU_Formosa 2016, we applied SCM to make an insecticidal peptide prediction system, using a quicker way to search for their target peptides and leaving them a group of potential target peptides.

Content:

  1. Datasets
  2. Results and the candidates we suggested

     The way we use SCM to cure fungal diseases is just a part for its ability. In fact, the peptide prediction system based on the SCM can be specialized in different cases of evaluating sequences.

     We decided to apply the method to NCTU_Formosa 2016, which utilized spider toxin to kill the pests. We introduced the scoring card to the insecticidal protein to see whether we could also predict invertebrate proteins from ion channel impairing toxins, improving their searching tool while finding more candidates for the project last year.

     First, we collected the insecticidal and ion channel impairing toxins by 2016 selection database. After deleting peptides which contained non-standard amino acids, we randomly chose positive and negative data to our datasets and divided them into two datasets, training datasets and testing datasets.

     For training parts, after initializing the first scorecard, we used IGA to optimize the scorecard for ten generations.

Results

     FullTrain_acc=91.70454568181819
     CV acc(train)=93.8636343698348
     CV auc(train)=95.44599143143164
     Best theshold=498.75
     Best_acc(test)=88.86363681818182
     Sensitivity(test)=0.7031249936523439
     Specitivity(test)=0.9202127637222726

Discussion

     To improve the project of NCTU_Formosa 2016, we introduced the scoring card method to the insecticidal proteins. By using the method, we can predict more new insecticidal proteins.

     We collected about three thousands of ion channel impairing toxins.

     Below is the excerpt of the peptide list.

一個表格

NEW PART:
- fMt with a constitutive promoter

Introduction

      This sequence is designed for constitutively chelating arsenic ions.

      We ligated a constitutive promoter(BBa_J23119) with metallothionein (fMt, BBa_K190019) to produce arsenic-binding protein. This metallothionein (fMt) is a kind of chelating protein from Fucus vesiculosus. It can bind both Arsenite (III) and Arsenate(V). This part was first designed by Groningen of iGEM 2009. The part of K190019 consists of RBS and fMt.

Modifying and Improving the Existing Biobrick

      1. Previous biobrick: BBa_K190031 of 2009 iGEM Groningen

      The metallothionein (BBa_K190031) is a fMt(BBa_K190019) under control of a low constitutive promotor (BBa_J23109). We failed several times in replicating the ligation of these two parts. After sequencing these three plasmids, we found BBa_J23109 has two Spel restriction sites in the prefix.(Figure 2.) The Figure 3 shows the electrophoresis of BBa_K190019 when its plasmid was cut by Xba I and Pst I and the Figure 4 shows the electrophoresis of BBa_J23119 and BBa_J23109 when their plasmids were cut by Spe I and Pst I. Thus, we decided to modify the biobrick by ligating fMt(BBa_K190019) with another constitutive promoter, BBa_J23119.(Figure 5.)





Fig.2 The sequence of J23109 Plasmid.






Fig.3 The electrophoresis of BBa_K190019.



Fig.4 The electrophoresis of BBa_J23119 and BBa_J23109.



Fig.4 The electrophoresis of BBa_J23119 and BBa_J23109.

Results

      We first examined the growth curve of E. coli DH5Alpha in arsenic solution and compared the growth curve of E. coli DH5Alpha in arsenic solution with that curve in solution without arsenic ions. The Table 1 shows the experimental design for the growth curve of E. coli DH5Alpha and the result shows in Table 2.



Table.1 The experiment design for the growth curve of E. coli DH5Alpha.


Table.2 The growth of E.coli DH5Alpha in different conditions.




      We find that E.coli DH5α won’t be affected by arsenic concentration below 100ppm.

      Then we conducted the next experiment. We examined the growth curve of E. coli DH5Alpha in arsenic solution and compared the growth curve of E. coli DH5Alpha in arsenic solution with that curve in solution with no arsenic ions. The Table 3 shows the experimental design for the growth curve of E. coli DH5Alpha and the result shows in Table .


Table.3 The experiment design for the growth curve of E. coli DH5Alpha with fMt plasmid.




Table.4 The growth of E. coli DH5Alpha in different conditions.



      The results of this experiment indicate that E. coli DH5 containing the transformed plasmid can survive in arsenic concentrations from 1 ppm to 100 ppm.

      In conclusion, we modified the part of BBa_K190031 by replacing the promoter BBa_J23109 by BBa_J23119. The growth of E. coli with this new plasmid us not affected the arsenic concentration.

Untitled Document