Difference between revisions of "Team:NCTU Formosa/Disease Occurrence Prediction"

 
(16 intermediate revisions by 3 users not shown)
Line 48: Line 48:
 
     font-family: Arial, sans-serif;
 
     font-family: Arial, sans-serif;
 
     margin: 10px 0 0;
 
     margin: 10px 0 0;
 +
}
 +
 +
h1{
 +
    border: 0;
 
}
 
}
  
Line 63: Line 67:
 
     margin: 10vh 10vw 0vh;
 
     margin: 10vh 10vw 0vh;
 
}
 
}
 +
 +
h4{
 +
    text-align: center;
 +
    margin-top: 0px;
 +
    margin-bottom: 50px !important;
 +
    font-size: 15px;
 +
}
 +
 +
h3{
 +
    text-align: center;
 +
    margin-top: 50px;
 +
    margin-bottom: 0px !important;
 +
    font-size: 15px;
 +
}
 +
 +
.latex{
 +
    font-size: 20px;
 +
}
 +
 +
.sub_text{
 +
    width:65vw;
 +
    position: relative;
 +
    left: 5vw;
 +
}
 +
 +
.sub2_text{
 +
    width:60vw;
 +
    position: relative;
 +
    left: 10vw;
 +
    line-height: 15px;
 +
    margin-bottom: 10px;
 +
}
 +
  
 
/*----------------------------------------------------------------------------*/
 
/*----------------------------------------------------------------------------*/
 
/*----------------------------------------------------------------------------*/
 
/*----------------------------------------------------------------------------*/
 
 
.hyperlink{
 
.hyperlink{
 
position: relative;
 
position: relative;
Line 88: Line 124:
 
#first{
 
#first{
 
position: absolute;
 
position: absolute;
left: 6vw;
+
left: 0.1vw;
top: 3.1vmax;
+
top: 3.5vmax;
width: 20vw;
+
width: 23vw;
 
     -webkit-transition: all 0.5 ease;
 
     -webkit-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
Line 100: Line 136:
 
#second{
 
#second{
 
position:absolute;
 
position:absolute;
left: 17.1vw;
+
left: 12.6vw;
top: 7vmax;
+
top: 8vmax;
width: 20vw;
+
width: 23vw;
 
     -webkit-transition: all 0.5 ease;
 
     -webkit-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
Line 112: Line 148:
 
#third{
 
#third{
 
position: absolute;
 
position: absolute;
left: 27vw;
+
left: 24vw;
top: 1.7vmax;
+
top: 2.5vmax;
width: 20vw;
+
width: 23vw;
 
     -webkit-transition: all 0.5 ease;
 
     -webkit-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
Line 124: Line 160:
 
#fourth{
 
#fourth{
 
position: absolute;
 
position: absolute;
left: 40vw;
+
left: 38vw;
width: 20vw;
+
width: 23vw;
 
     -webkit-transition: all 0.5 ease;
 
     -webkit-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
Line 135: Line 171:
 
#fifth{
 
#fifth{
 
position: absolute;
 
position: absolute;
left: 53vw;
+
left: 52vw;
top: 7.1vmax;
+
top: 8.5vmax;
width: 20vw;
+
width: 23vw;
 
     -webkit-transition: all 0.5 ease;
 
     -webkit-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
Line 147: Line 183:
 
#sixth{
 
#sixth{
 
position: absolute;
 
position: absolute;
left: 64.7vw;
+
left: 65vw;
top: 2.9vmax;
+
top: 3.5vmax;
width: 20vw;
+
width: 23vw;
 
     -webkit-transition: all 0.5 ease;
 
     -webkit-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
Line 159: Line 195:
 
#seventh{
 
#seventh{
 
position:absolute;
 
position:absolute;
left: 72.7vw;
+
left: 74.2vw;
top: 6.8vmax;
+
top: 8.5vmax;
width: 20vw;
+
width: 23vw;
 
     -webkit-transition: all 0.5 ease;
 
     -webkit-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
 
     -moz-transition: all 0.5 ease;
Line 171: Line 207:
  
 
#first:hover{
 
#first:hover{
     width: 23vw;
+
     width: 25vw;
     left: 4.5vw;
+
     left: -0.9vw;
 
}
 
}
  
 
#second:hover{
 
#second:hover{
     width: 23vw;
+
     width: 25vw;
     left: 15.6vw;
+
     left: 11.6vw;
 
}
 
}
  
 
#third:hover{
 
#third:hover{
     width: 23vw;
+
     width: 25vw;
     left: 25.5vw;
+
     left: 23vw;
 
}
 
}
  
 
#fourth:hover{
 
#fourth:hover{
     width: 23vw;
+
     width: 25vw;
     left: 38.5vw;
+
     left: 37vw;
 
}
 
}
  
 
#fifth:hover{
 
#fifth:hover{
     width: 23vw;
+
     width: 25vw;
     left: 51.5vw;
+
     left: 52vw;
 
}
 
}
  
 
#sixth:hover{
 
#sixth:hover{
     width: 23vw;
+
     width: 25vw;
     left: 63.2vw;
+
     left: 65vw;
 
}
 
}
  
 
#seventh:hover{
 
#seventh:hover{
     width: 23vw;
+
     width: 25vw;
     left: 71.2vw;
+
     left: 73.2vw;
 
}
 
}
 
/*----------------------------------------------------------------------------*/
 
/*----------------------------------------------------------------------------*/
 
+
/*----------------------------------------------------------------------------*/
 
/*----------------------------------------------------------------------------*/
 
/*----------------------------------------------------------------------------*/
  
Line 245: Line 281:
 
.sub1{
 
.sub1{
 
     position: relative;
 
     position: relative;
     width: 70vw;
+
     width: 65vw;
 
     left: 5vw;
 
     left: 5vw;
 
}
 
}
Line 253: Line 289:
 
     width: 60vw;
 
     width: 60vw;
 
     left: 10vw;
 
     left: 10vw;
 +
}
 +
 +
.hide h2{
 +
    margin-top: 50px;
 
}
 
}
  
Line 258: Line 298:
 
/*----------------------------------------------------------------------------*/
 
/*----------------------------------------------------------------------------*/
 
span>a:link {
 
span>a:link {
     color: red;
+
     color: #85CFEA;
 
}
 
}
  
 
span>a:visited {
 
span>a:visited {
     color: green;
+
     color: #85CFEA;
 
}
 
}
  
 
span>a:hover {
 
span>a:hover {
     color: hotpink;
+
     color: blue;
 
}
 
}
  
 
span>a:active {
 
span>a:active {
 
     color: blue;
 
     color: blue;
 +
}
 +
 +
span>a{
 +
    text-decoration: none;
 
}
 
}
  
Line 280: Line 324:
 
</style>
 
</style>
 
<!----------------------------------------------------------------------------->
 
<!----------------------------------------------------------------------------->
 +
</script>
 +
 +
    <script src="http://cdn.mathjax.org/mathjax/latest/MathJax.js" type="text/javascript">
 +
        MathJax.Hub.Config({
 +
            extensions: ["tex2jax.js", "TeX/AMSmath.js", "TeX/AMSsymbols.js"],
 +
            jax: ["input/TeX", "output/HTML-CSS"],
 +
            tex2jax: {
 +
                inlineMath: [
 +
                    ['$', '$'],
 +
                    ["\\(", "\\)"]
 +
                ],
 +
                displayMath: [
 +
                    ['$$', '$$'],
 +
                    ["\\[", "\\]"]
 +
                ],
 +
            },
 +
            "HTML-CSS": {
 +
                availableFonts: ["TeX"]
 +
            }
 +
        });
 +
    </script>
 +
 
<script>
 
<script>
 
$(document).ready(function(){
 
$(document).ready(function(){
Line 314: Line 380:
 
</head>
 
</head>
  
v
+
<body>
 +
 
 +
    <div class="dsocpd_head"><img src="https://static.igem.org/mediawiki/2017/b/bd/Dsocpd_head.png" width="100%"> </div>
 +
 
 +
    <div>
 +
        <div class="first_line"><img src="https://static.igem.org/mediawiki/2017/3/31/Hyperproject_line.png" width="24%"></div>
 +
        <div class="hyperlink">
 +
            <a href="https://2017.igem.org/Team:NCTU_Formosa/Description"><img src="https://static.igem.org/mediawiki/2017/a/a5/Hyperproject_des.png"  id="first"></a>
 +
 
 +
            <a href="https://2017.igem.org/Team:NCTU_Formosa/Applied_Design"><img src="https://static.igem.org/mediawiki/2017/9/95/Hyperproject_design.png"  id="second"></a>
 +
 
 +
            <a href="https://2017.igem.org/Team:NCTU_Formosa/Peptide_Prediction"><img src="https://static.igem.org/mediawiki/2017/1/1e/Hyperproject_ptpredic.png"  id="third"></a>
 +
 
 +
            <a href="https://2017.igem.org/Team:NCTU_Formosa/Disease_Occurrence_Prediction"><img src="https://static.igem.org/mediawiki/2017/7/70/Hyperproject_sgpredic.png"  id="fourth"></a>
 +
 
 +
            <a href="https://2017.igem.org/Team:NCTU_Formosa/Demonstrate"><img src="https://static.igem.org/mediawiki/2017/f/fc/Hyperproject_demo.png"  id="fifth"></a>
 +
 
 +
            <a href="https://2017.igem.org/Team:NCTU_Formosa/Contribution"><img src="https://static.igem.org/mediawiki/2017/0/01/Hyperproject_contri.png"  id="sixth"></a>
 +
 
 +
            <a href="https://2017.igem.org/Team:NCTU_Formosa/Improve"><img src="https://static.igem.org/mediawiki/2017/b/b5/Hyperproject_improve.png"  id="seventh"></a>
 +
        </div>
 +
        <div class="second_line"><img src="https://static.igem.org/mediawiki/2017/3/31/Hyperproject_line.png" width="24%"></div>
 +
    </div>
 +
 
 +
    <div class="dsocpd_content">
 +
        <div>
 +
            <div class="subtitle">
 +
                <h6>Overview</h6></div>
 +
            <p>
 +
                &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;For curing the fungal diseases in reality, we built the disease prediction system. According to the research data, weather conditions are related to fungal diseases happening incidence. Therefore, we used eleven weather data which extended by 4 weather conditions -- relative humidity, temperature, air pressure, and rainfall for the past 14 days. With the use of the convolutional neural network (CNN), we could get the daily probability of the disease happening.
 +
                Besides using CNN, we also added the spore germination rate to know the more accurate time of spore germination as an optimization.Later, we used IoTtalk to connected with the sensors and the spraying system.
 +
            </p>
 +
        </div>
 +
 
 +
        <!----------------------------------------------------------------------------->
 +
        <div class="subtitle">
 +
            <h6>Disease Occurrence model</h6></div>
 +
 
 +
        <div class="dsocm">
 +
            <div class="show">
 +
                <p>
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;With the combined of disease occurrence model and the spore germination rate modeling, we could predict the most likely outbreaking time of fungal diseases.
 +
                </p>
 +
                <h2 class="sub1">Content:</h2>
 +
 
 +
                <p class="sub1">- Convolutional Neural Network</p>
 +
                <p class="sub1">- Result of disease occurrence model</p>
 +
                <p class="sub1">- Spore germination rate modeling</p>
 +
                <p class="sub1">- Result of spore germination rate modeling</p>
 +
 
 +
                <div><img class="show_pic" src="https://static.igem.org/mediawiki/2017/4/4f/Ptp_hide.png" style="display:block; margin:auto;"></div>
 +
            </div>
 +
            <div class="hide">
 +
                <h1>Convolutional Neural Network</h1>
 +
 
 +
                <p>
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The method we used was called neural network, one of the popular machine learning solutions, or another well-known name called deep learning. The method that can improve the quality of the model is Convolutional Neural Network
 +
                    (CNN)
 +
                </p>
 +
 
 +
                <h2 class="sub1">Datasets:</h2>
 +
 
 +
                <p class="sub1">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;To complete this model, we needed two kinds of data in the beginning. One was weather data, the other was the weather data that respond to the time when fungal diseases happened.
 +
 
 +
                </p>
 +
 
 +
                <h2 class="sub2">- Collection: </h2>
 +
 
 +
                <p class="sub2">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The fungal disease data were from the government agency, and the weather information was from the <span><a href="http://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp" target="_blank">Central Meteorological Bureau's website</a></span>.
 +
                </p>
 +
 
 +
                <h2 class="sub2">- Pre-processing:</h2>
 +
 
 +
                <p class="sub2">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;We combined the fungal diseases data and the weather information then deleted the diseases data that had no weather data to match with. Later, these data were standardized for machine training and testing.
 +
                </p>
 +
 
 +
                <h2 class="sub1">Convolutional Neural Network(CNN):</h2>
 +
 
 +
                <p class="sub1">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;CNN can recognize the patterns of the feature automatically. Therefore, we used it to catch the pattern of the favorite weather change to the fungal diseases in the life cycle. In other words, if CNN identified the weather change that was suitable for fungal diseases in the specific time, it could correspond to the life cycle of the fungal diseases.
 +
                </p>
 +
 
 +
                <h2 class="sub2">- Max pooling:</h2>
 +
 
 +
                <p class="sub2">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;After parameters went through the CNN layers, the amount of data were increased, therefore we also added max pooling layer, which is a commanding way that can help reduce the computational complexity of the model and help to find the best tendency of these data.
 +
                </p>
 +
 
 +
                <h2 class="sub2">- Full connection layer:</h2>
 +
 
 +
                <p class="sub2">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;It converted the max pooling output into high dim space, and classified them into two classes, negative(diseases that had not happened) and positive(diseases that had happened).
 +
                </p>
 +
 
 +
                <h2 class="sub2">- Softmax function:</h2>
 +
 
 +
                <p class="sub2" style="margin-bottom: 20px;">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The network output was hard to be realized by humans, so we used softmax function to transform it into the diseases happening probability that could be understood by both machines and humans.
 +
                </p>
 +
 
 +
                <p>
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;After that, we used cross-entropy to evaluate the differences between the predicted values and actual values in the training stage. At last, we used independent data to test our final model.
 +
                </p>
 +
 
 +
                <h1 style="margin-top: 50px;">Result</h1>
 +
 
 +
                <img src="https://static.igem.org/mediawiki/2017/c/ce/Dsocm_photo17.PNG" width="60%" style="display: block; margin: auto">
 +
                <h4>Figure 1: After a bunch of train and test steps, we got our model with about 83% of accuracy.</h4>
 +
 
 +
 
 +
                <p style="text-align: center; margin-top: 50px; margin-bottom: 50px;">
 +
                    (For the result and technology in detail, please check out <span><a href="https://2017.igem.org/Team:NCTU_Formosa/Disease_Occurrence_Model" target="_blank">Disease Occurrence Modeling</a></span>.)
 +
                </p>
 +
 
 +
                <div><img src="https://static.igem.org/mediawiki/2017/3/31/Hyperproject_line.png" width="60%" style="display: block; margin: 10vh auto"></div>
 +
 
 +
                <h1>Spore Germination Rate Modeling</h1>
 +
 
 +
                <p>
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Although we could get the daily disease occurrence with CNN method, however, we wanted to get the more accurate timing to let our prediction more effective. Due to the fact that the spore germination must happen before disease occurrence, we tried to get the conditions that cause spores germinate. As a result, we made the spore germination rate with the research data and confirmed it by experiment.
 +
                </p>
 +
 
 +
                <h2 class="sub1">Formula:</h2>
 +
 
 +
                <p class="sub1">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;According to the researchers, humidity and temperature affect the spore germination the most between weather conditions. As the result, we focused on the relationships between the humidity with the spore germination and temperature with the spore germination.
 +
                </p>
 +
 
 +
                <p class="sub2">
 +
                    - Spore germination rate based on temperature: f<sub>1</sub>(x)=ax<sup>3</sup>+bx<sup>2</sup>+cx+d, can be fitted by a cubic equation.
 +
                </p>
 +
 
 +
                <p class="sub2">
 +
                    - Spore germination rate based on humidity: f<sub>2</sub>(x)=ax+b, can be fitted with a linear equation
 +
                </p>
 +
 
 +
                <p class="sub2">
 +
                    - The general spore germination rate: f<sub>1</sub>(x) x f<sub>2</sub>(x)
 +
                </p>
 +
 
 +
                <h2 class="sub1">Experiment:</h2>
 +
 
 +
                <h2 class="sub2">- Fixing temperature and change humidity:</h2>
 +
 
 +
                <p class="sub2">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Put the spore suspension solution(2x10<sup>5</sup>particles/mL) and 2% glucose solution mixing with equal volume, in concave glass slide and then place it into temperature and the humidity control box.
 +
                    The humidity was fixed at 100%, the temperature was tested every 5 degrees from 10 to 30 Celsius degree.
 +
                </p>
 +
 
 +
                <h2 class="sub2">- Fixing humidity and change temperature:</h2>
 +
 
 +
                <p class="sub2">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Put the spore suspension solution(2x10<sup>5</sup>particles/mL) and 2% glucose solution mixing with equal volume, in concave glass slide and placed into temperature and humidity control box. The temperature
 +
                    was fixed at 25 Celsius degree, and the humidity was tested every 5 percents from 80% to 100%.
 +
 
 +
                </p>
 +
 
 +
                <h2 class="sub2">- Independent event validation:</h2>
 +
 
 +
                <p class="sub2">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Compared the result of formula with the value of the spore germination in the reality to verify temperature and relative humidity are independent event to spore germination. We randomly choose the conditions of temperature
 +
                    23 and 13 Celsius, relative humidity 97% and 80%.
 +
 
 +
                </p>
 +
 
 +
                <h1 style="margin-top: 50px;">Result:</h1>
 +
 
 +
                <h2 class="sub2">- <i>Botrytis cinerea</i>’s spore germination rate based on temperature:</h2>
 +
 
 +
                <div class="latex">$$ f_1 = ( -0.0625x_1^3 + 2.9974x_1^2 - 37.865x_1 + 141.68) $$</div>
 +
 
 +
                <img src="https://static.igem.org/mediawiki/2017/2/2d/Dsocm_photo12.png" width="60%" style="display: block; margin: auto;">
 +
                <h4>Figure 2: <i>Botrytis cinerea</i>’s spore germination rate based on temperature.(9 hours)</h4>
 +
 
 +
                <h2 class="sub2">- <i>Botrytis cinerea</i>’s spore germination rate based on relative humidity:</h2>
 +
                <div class="latex">$$ f_2 = 316.88x - 216.88 $$</div>
 +
 
 +
                <img src="https://static.igem.org/mediawiki/2017/9/97/Dsocm_photo10.png" width="60%" style="display: block; margin: auto;">
 +
                <h4>Figure 3: <i>Botrytis cinerea</i>’s spore germination rate based on relative humidity(9 hours</h4>
 +
 
 +
                <h3>Table 1: <i>Botrytis cinerea</i>’s spore germination rate based on relative humidity(9 hours)</h3>
 +
                <img src="https://static.igem.org/mediawiki/2017/8/83/Compares.PNG" width="60%" style="display: block; margin: auto;">
 +
 
 +
                <h2 class="sub2">- Independent event validation:</h2>
 +
                <p class="sub2">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; The results of comparing the spore germination rate of our experiment and formula.
 +
 
 +
                </p>
 +
 
 +
                <p class="sub2">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; The result can proof that our formula is quite precise.
 +
                </p>
 +
 
 +
                <h2 class="sub2">- Conclusion: </h2>
 +
                <p class="sub2">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Our final formula is:
 +
                </p>
 +
 
 +
                <div class="latex">$$ f_1 \times f_2 = [(-0.0625x_1^3 + 2.9974x_1^2 - 37.865x_1 + 141.8)\div 100]\times [(316.88x_2 - 216.88)\div 100] $$</div>
 +
 
 +
                <p class="sub2">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;We divided it by 100 respectively because we change % to possibility, where x<sub>1</sub> is temperature and x<sub>2</sub> is relative humidity.
 +
                    <p class="sub2">
 +
                        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;According our experiment result, we prove that temperature and relative humidity is an independent event and our formula is quite precise.
 +
                    </p>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
                    <p style="text-align: center; margin-top: 50px;">
 +
                        (For the result and technology in detail, please check out <span><a href="https://2017.igem.org/Team:NCTU_Formosa/Disease_Occurrence_Model" target="_blank">Spore Germination Rate Modeling</a></span>)
 +
                    </p>
 +
 
 +
 
 +
 
 +
                    <div><img class="hide_pic" src="https://static.igem.org/mediawiki/2017/c/cb/Ptp_show.png" style="display:block; margin:auto;"></div>
 +
            </div>
 +
        </div>
 +
 
 +
        <!----------------------------------------------------------------------------->
 +
        <div class="subtitle">
 +
            <h6>Application</h6></div>
 +
 
 +
        <div class="app">
 +
            <div class="show2">
 +
                <p>
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;To put the disease occurrence prediction in reality, we combined it with IoT system and we used the IoTtalk platform to make the IoT contact easier and more convenient and link the entire system.The IoTtalk platform was developed
 +
                    by the lab of Dr.Lin in National Chiao Tung University, Taiwan.
 +
                </p>
 +
                <div><img class="show2_pic" src="https://static.igem.org/mediawiki/2017/4/4f/Ptp_hide.png" style="display:block; margin:auto;"></div>
 +
            </div>
 +
            <div class="hide2">
 +
                <h1>IoTtalk</h1>
 +
 
 +
                <p>
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;To put the disease occurrence prediction, in reality, we combined it with IoT system and we used the IoTtalk platform to make the IoT contact easier and more convenient and link the entire system.The IoTtalk platform was developed by the lab of Dr.Lin in National Chiao Tung University, Taiwan.
 +
                </p>
 +
 
 +
                <p style="margin-bottom: 20px;">
 +
                    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;First, we used the sensors to grab the prompt weather conditions and sent to get the spore germination incidence or accumulated till 14 days then sent into the predict system to get the daily possibility of disease occurrence.
 +
                    If both overcame the threshold, the spraying system would be opened and sprayed the peptide that was chosen from our database. The figure below is the main architecture of our project.
 +
                </p>
 +
 
 +
                <img src="https://static.igem.org/mediawiki/2017/b/b2/Dsocpd_IoTtalk.png" width="60%" style="display: block; margin: auto">
 +
                <h4>Figure 4: Main architecture of IoT</h4>
 +
 
 +
 
 +
                <p style="text-align: center; margin-top: 50px;">
 +
                    (For more in detail, please check out<span><a href="https://2017.igem.org/Team:NCTU_Formosa/Demonstrate"> Demonstration--Plant box</a></span>.)
 +
                </p>
 +
 
 +
                <h1>Reference: </h1>
 +
                <p>[1]<small>Mofan Zhou, https://morvanzhou.github.io/tutorials/machine-learning/, 2017</small></p>
 +
                <p>[2]<small>c1mone Tensorflow Day Generative Adversarial Network with MNIST, https://ithelp.ithome.com.tw/articles/10187424, 2016</small></p>
 +
 
 +
 
 +
                <div><img class="hide2_pic" src="https://static.igem.org/mediawiki/2017/c/cb/Ptp_show.png" style="display:block; margin:auto;"></div>
 +
            </div>
 +
 
 +
        </div>
 +
 
 +
        <!----------------------------------------------------------------------------->
 +
 
 +
 
 +
    </div>
 +
 
 +
    <div id="fut"></div>
 +
 
 +
 
 +
 
 +
</body>
 
</html>
 
</html>
  
 
{{NCTU_Formosa/Footer}}
 
{{NCTU_Formosa/Footer}}

Latest revision as of 01:45, 2 November 2017

navigation

NCTU_Formosa: Disease Occurrence Prediction
Overview

     For curing the fungal diseases in reality, we built the disease prediction system. According to the research data, weather conditions are related to fungal diseases happening incidence. Therefore, we used eleven weather data which extended by 4 weather conditions -- relative humidity, temperature, air pressure, and rainfall for the past 14 days. With the use of the convolutional neural network (CNN), we could get the daily probability of the disease happening. Besides using CNN, we also added the spore germination rate to know the more accurate time of spore germination as an optimization.Later, we used IoTtalk to connected with the sensors and the spraying system.

Disease Occurrence model

     With the combined of disease occurrence model and the spore germination rate modeling, we could predict the most likely outbreaking time of fungal diseases.

Content:

- Convolutional Neural Network

- Result of disease occurrence model

- Spore germination rate modeling

- Result of spore germination rate modeling

Convolutional Neural Network

     The method we used was called neural network, one of the popular machine learning solutions, or another well-known name called deep learning. The method that can improve the quality of the model is Convolutional Neural Network (CNN)

Datasets:

     To complete this model, we needed two kinds of data in the beginning. One was weather data, the other was the weather data that respond to the time when fungal diseases happened.

- Collection:

     The fungal disease data were from the government agency, and the weather information was from the Central Meteorological Bureau's website.

- Pre-processing:

     We combined the fungal diseases data and the weather information then deleted the diseases data that had no weather data to match with. Later, these data were standardized for machine training and testing.

Convolutional Neural Network(CNN):

     CNN can recognize the patterns of the feature automatically. Therefore, we used it to catch the pattern of the favorite weather change to the fungal diseases in the life cycle. In other words, if CNN identified the weather change that was suitable for fungal diseases in the specific time, it could correspond to the life cycle of the fungal diseases.

- Max pooling:

     After parameters went through the CNN layers, the amount of data were increased, therefore we also added max pooling layer, which is a commanding way that can help reduce the computational complexity of the model and help to find the best tendency of these data.

- Full connection layer:

     It converted the max pooling output into high dim space, and classified them into two classes, negative(diseases that had not happened) and positive(diseases that had happened).

- Softmax function:

     The network output was hard to be realized by humans, so we used softmax function to transform it into the diseases happening probability that could be understood by both machines and humans.

     After that, we used cross-entropy to evaluate the differences between the predicted values and actual values in the training stage. At last, we used independent data to test our final model.

Result

Figure 1: After a bunch of train and test steps, we got our model with about 83% of accuracy.

(For the result and technology in detail, please check out Disease Occurrence Modeling.)

Spore Germination Rate Modeling

     Although we could get the daily disease occurrence with CNN method, however, we wanted to get the more accurate timing to let our prediction more effective. Due to the fact that the spore germination must happen before disease occurrence, we tried to get the conditions that cause spores germinate. As a result, we made the spore germination rate with the research data and confirmed it by experiment.

Formula:

     According to the researchers, humidity and temperature affect the spore germination the most between weather conditions. As the result, we focused on the relationships between the humidity with the spore germination and temperature with the spore germination.

- Spore germination rate based on temperature: f1(x)=ax3+bx2+cx+d, can be fitted by a cubic equation.

- Spore germination rate based on humidity: f2(x)=ax+b, can be fitted with a linear equation

- The general spore germination rate: f1(x) x f2(x)

Experiment:

- Fixing temperature and change humidity:

     Put the spore suspension solution(2x105particles/mL) and 2% glucose solution mixing with equal volume, in concave glass slide and then place it into temperature and the humidity control box. The humidity was fixed at 100%, the temperature was tested every 5 degrees from 10 to 30 Celsius degree.

- Fixing humidity and change temperature:

     Put the spore suspension solution(2x105particles/mL) and 2% glucose solution mixing with equal volume, in concave glass slide and placed into temperature and humidity control box. The temperature was fixed at 25 Celsius degree, and the humidity was tested every 5 percents from 80% to 100%.

- Independent event validation:

     Compared the result of formula with the value of the spore germination in the reality to verify temperature and relative humidity are independent event to spore germination. We randomly choose the conditions of temperature 23 and 13 Celsius, relative humidity 97% and 80%.

Result:

- Botrytis cinerea’s spore germination rate based on temperature:

$$ f_1 = ( -0.0625x_1^3 + 2.9974x_1^2 - 37.865x_1 + 141.68) $$

Figure 2: Botrytis cinerea’s spore germination rate based on temperature.(9 hours)

- Botrytis cinerea’s spore germination rate based on relative humidity:

$$ f_2 = 316.88x - 216.88 $$

Figure 3: Botrytis cinerea’s spore germination rate based on relative humidity(9 hours

Table 1: Botrytis cinerea’s spore germination rate based on relative humidity(9 hours)

- Independent event validation:

      The results of comparing the spore germination rate of our experiment and formula.

      The result can proof that our formula is quite precise.

- Conclusion:

      Our final formula is:

$$ f_1 \times f_2 = [(-0.0625x_1^3 + 2.9974x_1^2 - 37.865x_1 + 141.8)\div 100]\times [(316.88x_2 - 216.88)\div 100] $$

     We divided it by 100 respectively because we change % to possibility, where x1 is temperature and x2 is relative humidity.

     According our experiment result, we prove that temperature and relative humidity is an independent event and our formula is quite precise.

(For the result and technology in detail, please check out Spore Germination Rate Modeling)

Application

     To put the disease occurrence prediction in reality, we combined it with IoT system and we used the IoTtalk platform to make the IoT contact easier and more convenient and link the entire system.The IoTtalk platform was developed by the lab of Dr.Lin in National Chiao Tung University, Taiwan.

IoTtalk

     To put the disease occurrence prediction, in reality, we combined it with IoT system and we used the IoTtalk platform to make the IoT contact easier and more convenient and link the entire system.The IoTtalk platform was developed by the lab of Dr.Lin in National Chiao Tung University, Taiwan.

     First, we used the sensors to grab the prompt weather conditions and sent to get the spore germination incidence or accumulated till 14 days then sent into the predict system to get the daily possibility of disease occurrence. If both overcame the threshold, the spraying system would be opened and sprayed the peptide that was chosen from our database. The figure below is the main architecture of our project.

Figure 4: Main architecture of IoT

(For more in detail, please check out Demonstration--Plant box.)

Reference:

[1]Mofan Zhou, https://morvanzhou.github.io/tutorials/machine-learning/, 2017

[2]c1mone Tensorflow Day Generative Adversarial Network with MNIST, https://ithelp.ithome.com.tw/articles/10187424, 2016

Untitled Document