Difference between revisions of "Team:NTNU Trondheim/Model"

 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
{{NTNU_Trondheim}}
+
<html lang="en">
<html>
+
<!--
 +
    Colours used:
 +
        white: #F5F5F5 (whitesmoke)
 +
        black: #101417
 +
        grey: #808080
 +
-->
 +
<head>
 +
    <meta charset="UTF-8">
 +
    <!-- Preloaded elements which is added dynamically to the page, and as such might be needed before normally loaded -->
 +
    <link rel="preload" as="image" href="https://static.igem.org/mediawiki/2017/3/3a/T--NTNU_Trondheim--arrow_down_black.png">
 +
    <link rel="preload" as="image" href="https://static.igem.org/mediawiki/2017/8/85/T--NTNU_Trondheim--arrow_up_black.png">
 +
    <link rel="preload" as="image" href="https://static.igem.org/mediawiki/2017/d/d2/T--NTNU_Trondheim--arrow_up_grey.png">
 +
    <!--stylesheets etc -->
 +
    <link rel="stylesheet" type="text/css"
 +
          href="https://2017.igem.org/Template:NTNU_Trondheim/CSS/global?action=raw&ctype=text/css" />
 +
    <link rel="stylesheet" type="text/css"
 +
          href="https://2017.igem.org/Template:NTNU_Trondheim/CSS/footer?action=raw&ctype=text/css" />
 +
    <link rel="stylesheet" type="text/css"
 +
          href="https://2017.igem.org/Template:NTNU_Trondheim/CSS/menu?action=raw&ctype=text/css" />
 +
    <link rel="stylesheet" type="text/css"
 +
          href="https://2017.igem.org/Template:NTNU_Trondheim/CSS/content?action=raw&ctype=text/css" />
 +
    <link rel="stylesheet" type="text/css"
 +
          href="https://2017.igem.org/Template:NTNU_Trondheim/CSS/page_picture?action=raw&ctype=text/css" />
 +
    <link rel="stylesheet" type="text/css"
 +
          href="https://2017.igem.org/Template:NTNU_Trondheim/CSS/fix_code?action=raw&ctype=text/css" />
  
<div class="column full_size">
+
    <script src="http://code.jquery.com/jquery-latest.min.js" type="text/javascript"></script>
<h1> Modeling</h1>
+
  
<p>Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.</p>
+
    <script type="text/javascript" src="https://2017.igem.org/Template:NTNU_Trondheim/JS/picture_field_resize?action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript" src="https://2017.igem.org/Template:NTNU_Trondheim/JS/slideshow?action=raw&ctype=text/javascript"></script>
 +
    <script type="text/javascript" src="https://2017.igem.org/Template:NTNU_Trondheim/JS/show_more_text?action=raw&ctype=text/javascript"></script>
 +
</head>
 +
<body>
 +
<div id="page_content_container">
 +
    <div id="menu">
 +
        <div id='cssmenu'>
 +
            <!-- Is ordered left to right! -->
 +
            <ul>
 +
                <li>
 +
                    <a href='https://2017.igem.org/Team:NTNU_Trondheim'>
 +
                        <div>
 +
  <span>
 +
    Home
 +
  </span>
 +
                        </div>
 +
                    </a>
 +
                </li>
 +
                <li>
 +
                    <a href='https://2017.igem.org/Team:NTNU_Trondheim/Safety'>
 +
                        <div>
 +
  <span>
 +
Safety
 +
  </span>
 +
                        </div>
 +
                    </a>
 +
                </li>
 +
                <li>
 +
                    <a href='https://2017.igem.org/Team:NTNU_Trondheim/Parts'>
 +
                        <div>
 +
  <span>
 +
Parts
 +
  </span>
 +
                        </div>
 +
                    </a>
 +
                </li>
 +
                <li class="has-sub active">
 +
                    <div>
 +
                        <span>
 +
                            Project
 +
                        </span>
 +
                    </div>
 +
                    <ul>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Description'>
 +
                                <span>
 +
                                    Description
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Background'>
 +
                                <span>
 +
                                    Background
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Results'>
 +
                                <span>
 +
                                    Results
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Contribution'>
 +
                                <span>
 +
                                    Contribution
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Demonstrate'>
 +
                                <span>
 +
                                    Demonstrate
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Model'>
 +
                                <span>
 +
                                    Modeling
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Notebook'>
 +
                                <span>
 +
                                    Lab Journal
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Experiments'>
 +
                                <span>
 +
                                    Protocols
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                    </ul>
 +
                </li>
 +
                <li class='has-sub'>
 +
                    <div>
 +
                        <span>
 +
                            Human practices
 +
                        </span>
 +
                    </div>
 +
                    <ul>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/HP/Silver'>
 +
                                <span>
 +
                                    Human practice
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Engagement'>
 +
                                <span>
 +
                                    Public engagement
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                    </ul>
 +
                </li>
 +
                <li class='has-sub'>
 +
                    <div>
 +
                        <span>
 +
                            People
 +
                        </span>
 +
                    </div>
 +
                    <ul>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Team'>
 +
                                <span>
 +
                                    Team
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Collaborations'>
 +
                                <span>
 +
                                    Collaborations
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Attributions'>
 +
                                <span>
 +
                                    Attributions
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/People/Sponsors'>
 +
                                <span>
 +
                                    Sponsors
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                    </ul>
 +
                </li>
 +
                <li class='has-sub'>
 +
                    <div>
 +
                        <span>
 +
                            Awards
 +
                        </span>
 +
                    </div>
 +
                    <ul>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Achievements'>
 +
                                <span>
 +
                                    Achievements
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Applied_Design'>
 +
                                <span>
 +
                                    Applied Design
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                        <li>
 +
                            <a href='https://2017.igem.org/Team:NTNU_Trondheim/Hardware'>
 +
                                <span>
 +
                                    Hardware
 +
                                </span>
 +
                            </a>
 +
                        </li>
 +
                    </ul>
 +
                </li>
 +
            </ul>
 +
        </div>
 +
    </div>
  
</div>
+
    <div id="picture_field">
<div class="clear"></div>
+
        <div id="triangle_topright">
 +
            <img src="https://static.igem.org/mediawiki/2017/e/e6/T--NTNU_Trondheim--top_right_triangle.svg">
 +
        </div>
 +
        <div id="icon">
 +
            <img src="https://static.igem.org/mediawiki/2017/8/89/T--NTNU_Trondheim--logo_wo_background.svg">
 +
        </div>
 +
        <div id="triangle_topleft">
 +
            <img src="https://static.igem.org/mediawiki/2017/7/74/T--NTNU_Trondheim--top_left_triangle.svg">
 +
        </div>
 +
        <div id="slideshow_container">
 +
            <!-- example of slideshow of 1, ie. only a picture. If you wish to make slideshow again, remember to comment
 +
            back the slideshow.js script in the head section-->
 +
            <!-- dimensions 2:1 must be honored for ALL pictures added to slideshow -->
 +
            <img src="https://static.igem.org/mediawiki/2017/7/7e/T--NTNU_Trondheim--Modelling.jpg">
 +
        </div>
 +
    </div>
  
<div class="column half_size">
+
    <div class="content">
<h3> Gold Medal Criterion #3</h3>
+
        <div class="break_header">
<p>
+
            <img src="https://static.igem.org/mediawiki/2017/4/49/T--NTNU_Trondheim--splitter_header.svg">
To complete for the gold medal criterion #3, please describe your work on this page and fill out the description on your <a href="https://2017.igem.org/Judging/Judging_Form">judging form</a>. To achieve this medal criterion, you must convince the judges that your team has gained insight into your project from modeling. You may not convince the judges if your model does not have an effect on your project design or implementation.
+
        </div>
</p>
+
  
<p>
+
        <div class="paragraph_no_img">
Please see the <a href="https://2017.igem.org/Judging/Medals"> 2017 Medals Page</a> for more information.  
+
            <h1>What did our model achieve?</h1>
</p>
+
            <p>
</div>
+
                We achieved two main goals;
 +
                <br><br>
 +
                We designed a mathematical model for phage-bacteria interaction. This work expands upon existing models
 +
                to encompass variation in lysis timing of phages.
 +
                <br><br>
 +
                We applied our mathematical model to our chemostat system and determined ideal parameters for our
 +
                experimental project. We then utilized these parameters when implementing our physical system
 +
                (see results below).
 +
                <br><br>
 +
                All our code is available on our Wiki.
 +
                Se <a href="https://static.igem.org/mediawiki/2017/a/ad/T--NTNU_Trondheim--Functions.txt">functions.cpp</a>,
 +
                <a href="https://static.igem.org/mediawiki/2017/1/15/T--NTNU_Trondheim--Classes.txt">classes.cpp</a>,
 +
                <a href="https://static.igem.org/mediawiki/2017/8/83/T--NTNU_Trondheim--Header.txt">header.h</a>
 +
                and <a href="https://static.igem.org/mediawiki/2017/3/39/T--NTNU_Trondheim--Main.txt">main.cpp</a>.
 +
            </p>
 +
        </div>
  
<div class="column half_size">
 
<h3>Best Model Special Prize</h3>
 
  
<p>
+
        <div class="break_2">
To compete for the <a href="https://2017.igem.org/Judging/Awards">Best Model prize</a>, please describe your work on this page  and also fill out the description on the <a href="https://2017.igem.org/Judging/Judging_Form">judging form</a>. Please note you can compete for both the gold medal criterion #3 and the best model prize with this page.
+
            <img src="https://static.igem.org/mediawiki/2017/5/52/T--NTNU_Trondheim--splitter_2.svg">
<br><br>
+
        </div>
You must also delete the message box on the top of this page to be eligible for the Best Model Prize.
+
</p>
+
  
</div>
+
        <div class="paragraph_no_img">
<div class="clear"></div>
+
            <h1>Modelling phages</h1>
 +
            <p>
 +
                Phages are infectious viruses that kill certain bacteria. When a phage finds a bacterium to infect, it
 +
                attaches and inserts itself into the bacterium, and hijacks the bacterium’s cellular machinery to create
 +
                lots of copies of itself. After a short period, the new phage particles will burst out of the now dead
 +
                bacterium (lysis), ready to infect new bacteria. We used existing mathematical models of this interaction,
 +
                and expanded upon them.
 +
            </p>
 +
        </div>
  
<div class="column full_size">
+
        <div class="dropdown_paragraph">
<h5> Inspiration </h5>
+
            <div class="slidedown_button">
<p>
+
                <p class="show_more">Show more</p>
Here are a few examples from previous teams:
+
                <img src="https://static.igem.org/mediawiki/2017/7/72/T--NTNU_Trondheim--arrow_down_grey.png">
</p>
+
                <p class="show_less">Show less</p>
<ul>
+
            </div>
<li><a href="https://2016.igem.org/Team:Manchester/Model">Manchester 2016</a></li>
+
            <div class="dropdown_text">
<li><a href="https://2016.igem.org/Team:TU_Delft/Model">TU Delft 2016  </li>
+
<li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">ETH Zurich 2014</a></li>
+
<li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">Waterloo 2014</a></li>
+
</ul>
+
  
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        A simple model for one bacteria and one phage in a closed system is easily obtained. As a starting
 +
                        point, we used the model detailed in [1] without mutation. This model and all following models
 +
                        assumes mass-action kinetics between bacteria and phages; the rate of infection is proportional
 +
                        to the product of the concentrations of the two.
 +
                    </p>
 +
                </div>
  
</div>
+
                <div class="image" style="width: 50%;margin-top: 5em">
 +
                    <!-- The width of the page the picture will occupy. The height is calculated from it to honor the source dimensions. Should NOT exceed 70%-->
 +
                    <!-- margin-top and margin-bottom should be set to reach a suitable amount of whitespace, depending on the image location. 0 by default -->
 +
                    <img src="https://static.igem.org/mediawiki/2017/0/09/T--NTNU_Trondheim--Modelling_1.png">
 +
                </div>
  
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        Here, S and P are the concentration of bacteria and phages in the system respectively. µ is the
 +
                        growth rate of bacteria, α is the adsorption rate of phages, β is the number of new phages produced
 +
                        per infection, and T is the average lysis time of an infected bacterium. This model serves as the
 +
                        basis for phage-bacteria interactions in many papers.
 +
                        <br><br>
 +
                        The bacterial rate of growth µ is not a constant. For all following models, we assume µ follows
 +
                        Michaelis Menten kinetics;
 +
                    </p>
 +
                </div>
 +
 +
                <div class="image" style="width: 50%;margin-top: 5em">
 +
                    <!-- The width of the page the picture will occupy. The height is calculated from it to honor the source dimensions. Should NOT exceed 70%-->
 +
                    <!-- margin-top and margin-bottom should be set to reach a suitable amount of whitespace, depending on the image location. 0 by default -->
 +
                    <img src="https://static.igem.org/mediawiki/2017/0/02/T--NTNU_Trondheim--Modelling_02.png">
 +
                </div>
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        Where N is the concentration of growth-limiting nutrient, µ_max is the max growth rate, and K_m
 +
                        is the half-velocity constant; the nutrient concentration at which µ = µ<sub>max</sub>/2.
 +
                        <br><br>
 +
                        This model assumes a constant lysis time; every phage infects a bacterium for exactly T units
 +
                        of time before lysing. To create a more realistic model, we adapted the model to deal with variable
 +
                        lysis times; we assume a lysis probability function normally distributed around the average lysis
 +
                        time T. This requires an additional variable I, a vector function that keeps track of all infected
 +
                        bacteria and when they were infected. By convoluting the probability distribution function f of
 +
                        a bacterium lysing with the infection vector I, we obtain the number of new lysed bacteria at
 +
                        time t.
 +
                    </p>
 +
                </div>
 +
 +
                <div class="image" style="width: 50%;margin-top: 5em">
 +
                    <!-- The width of the page the picture will occupy. The height is calculated from it to honor the source dimensions. Should NOT exceed 70%-->
 +
                    <!-- margin-top and margin-bottom should be set to reach a suitable amount of whitespace, depending on the image location. 0 by default -->
 +
                    <img src="https://static.igem.org/mediawiki/2017/d/d2/T--NTNU_Trondheim--Modelling_03.png">
 +
                </div>
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        Here, bacteria grow according to Michaelis-Menten kinetics with N designating the concentration
 +
                        of growth-limiting nutrient, and y is a stoichiometric conversion factor between nutrient and
 +
                        bacterial mass. The infection vector I is updated by adding new infections at current time t and
 +
                        subtracting the convolution of I with the probability distribution f. Note that if using discrete
 +
                        time steps to solve system (3), I effectively expands an entry every time step with the new entry
 +
                        housing I(t).
 +
                    </p>
 +
                </div>
 +
 +
                <div class="image" style="width: 50%;margin-top: 5em">
 +
                    <!-- The width of the page the picture will occupy. The height is calculated from it to honor the source dimensions. Should NOT exceed 70%-->
 +
                    <!-- margin-top and margin-bottom should be set to reach a suitable amount of whitespace, depending on the image location. 0 by default -->
 +
                    <img src="https://static.igem.org/mediawiki/2017/5/51/T--NTNU_Trondheim--Modelling_04.png">
 +
                </div>
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        f is given by the ration between g, the PDF of the lysis time, and 1-G, the inverse CDF of lysis
 +
                        time. Dividing the PDF with the inverse CDF adjusts the distribution to account for lysed infected
 +
                        bacteria. Our modelling assumes g follows a normal distribution N(T, σ2) around the average lysis
 +
                        time with a variance σ2. However, if desired, any valid probability distribution can be inserted
 +
                        in the expression for f.
 +
                    </p>
 +
                </div>
 +
 +
                <div class="dropdown_collapse">
 +
                    Hide
 +
                </div>
 +
            </div>
 +
        </div>
 +
 +
 +
        <div class="break_1">
 +
            <img src="https://static.igem.org/mediawiki/2017/6/6d/T--NTNU_Trondheim--splitter_1.svg">
 +
        </div>
 +
 +
        <div class="paragraph_no_img">
 +
            <h1>Modelling chemostats</h1>
 +
            <p>
 +
                Our motivation for modelling phage-bacteria interactions is to provide our wet lab with appropriate
 +
                parameters for accomplishing our goal. That is, using our chemostat system to evolve a phage capable
 +
                of killing a select strain of bacteria. We described our system mathematically and wrote a C++ program
 +
                to numerically solve the system of integro-differential equations. Matlab was used for plotting. Using
 +
                this, we determined parameters to optimally evolve a capable phage and test out project.
 +
            </p>
 +
        </div>
 +
 +
        <div class="dropdown_paragraph">
 +
            <div class="slidedown_button">
 +
                <p class="show_more">Show more</p>
 +
                <img src="https://static.igem.org/mediawiki/2017/7/72/T--NTNU_Trondheim--arrow_down_grey.png">
 +
                <p class="show_less">Show less</p>
 +
            </div>
 +
            <div class="dropdown_text">
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        A single chemostat with one bacterial strain and continuously supplied medium can be modelled by
 +
                        the following differential equations adapted from (3) without phage.
 +
                    </p>
 +
                </div>
 +
 +
                <div class="image" style="width: 50%;margin-top: 5em">
 +
                    <!-- The width of the page the picture will occupy. The height is calculated from it to honor the source dimensions. Should NOT exceed 70%-->
 +
                    <!-- margin-top and margin-bottom should be set to reach a suitable amount of whitespace, depending on the image location. 0 by default -->
 +
                    <img src="https://static.igem.org/mediawiki/2017/2/25/T--NTNU_Trondheim--Modelling_05.png">
 +
                </div>
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        Where c_N is the concentration of the continuously supplied medium, Q is the volume of medium
 +
                        supplied per unit time, and q is the exchange rate, Q/V (also called dilution rate). This is an
 +
                        important quantity in chemostat modelling, since the equilibrium growth rate of a bacteria in a
 +
                        chemostat is equal to the exchange rate. It is therefore the major independent variable used to
 +
                        control the chemostat.
 +
                    </p>
 +
                </div>
 +
 +
                <div class="image" style="width: 50%;margin-top: 5em">
 +
                    <!-- The width of the page the picture will occupy. The height is calculated from it to honor the source dimensions. Should NOT exceed 70%-->
 +
                    <!-- margin-top and margin-bottom should be set to reach a suitable amount of whitespace, depending on the image location. 0 by default -->
 +
                    <img src="https://static.igem.org/mediawiki/2017/f/f4/T--NTNU_Trondheim--Modelling_06.png">
 +
                    <p><b>Fig. 1</b> Bacterial growth in chemostat measured by OD600.</p>
 +
                </div>
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        Fig. 1 shows the bacterial growth curve for a chemostat system with typical parameters (see
 +
                        constants list). The figure shows the typical elements of a bacterial growth curve, with a
 +
                        lag phase, exponential growth, and stationary phase. Since chemostats are continuously supplied
 +
                        with new medium and flushed, bacterial death can safely be neglected.
 +
                        <br><br><br>
 +
                        The state system of a chemostat continuously supplied with two bacteria and two phages is shown
 +
                        below. Our goal is to start with a phage (P1) incapable of infecting a certain bacteria (S2) and
 +
                        continue feeding it with a bacteria it can infect (S1) until it evolves into a phage (P2) capable
 +
                        of infecting S2.
 +
                    </p>
 +
                </div>
 +
 +
                <div class="image" style="width: 50%;margin-top: 5em">
 +
                    <!-- The width of the page the picture will occupy. The height is calculated from it to honor the source dimensions. Should NOT exceed 70%-->
 +
                    <!-- margin-top and margin-bottom should be set to reach a suitable amount of whitespace, depending on the image location. 0 by default -->
 +
                    <img src="https://static.igem.org/mediawiki/2017/3/31/T--NTNU_Trondheim--Modelling_07.png">
 +
                </div>
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        In this system of equations, Q designates the total flow in and out of chemostat, where Q1 and
 +
                        Q2 are the flows of bacteria S1 and S2 respectively. The phage production is multiplied by e-qT
 +
                        to account for washout of infected bacteria. The fitness parameters of the both bacteria and both
 +
                        phages are assumed to be the same, although obviously this model can be expanded to remove this
 +
                        assumption fairly easily (it necessitates three infection vectors).
 +
                        <br><br>
 +
                        A differential equation solver allowing for time-delay convolution proved hard to find, so we
 +
                        wrote our own 4th order Runge-Kutta solver. We originally wrote the script in Matlab, but moved
 +
                        to C++ after it became clear the script was computationally-intensive and needed to run faster.
 +
                    </p>
 +
                </div>
 +
 +
                <div class="image" style="width: 50%;margin-top: 5em">
 +
                    <!-- The width of the page the picture will occupy. The height is calculated from it to honor the source dimensions. Should NOT exceed 70%-->
 +
                    <!-- margin-top and margin-bottom should be set to reach a suitable amount of whitespace, depending on the image location. 0 by default -->
 +
                    <img src="https://static.igem.org/mediawiki/2017/8/85/T--NTNU_Trondheim--Modelling_08.png">
 +
                    <p><b>Fig. 2</b> Number of bacteria of strains S1 and S2 alongside number of phages P1 and P2 over 12 hours. Log scale.</p>
 +
                </div>
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        Fig. 2 shows a simulation of equation set (6) with typical parameters (see constants list). All
 +
                        four biological species are graphed over 12 hours. However, this model does not allow for the
 +
                        mutation of bacteria and phages which our system relies on. In order to obtain graphs such as
 +
                        Fig. 2 it was necessary to initialize with a small number of phage P2 in the system. Our system
 +
                        mostly assumes mutations that give rise to P2 will not occur before steady state, so this is a
 +
                        limitation of the model.
 +
                        <br><br>
 +
                        However, we still managed to put the model to good use by optimizing quantities which should
 +
                        maximize potential mutation. We wish to maximize the speed at which our system evolves P2. In
 +
                        a chemostat with a single phage and bacteria at steady state, this is given by
 +
                    </p>
 +
                </div>
 +
 +
                <div class="image" style="width: 50%;margin-top: 5em">
 +
                    <!-- The width of the page the picture will occupy. The height is calculated from it to honor the source dimensions. Should NOT exceed 70%-->
 +
                    <!-- margin-top and margin-bottom should be set to reach a suitable amount of whitespace, depending on the image location. 0 by default -->
 +
                    <img src="https://static.igem.org/mediawiki/2017/8/87/T--NTNU_Trondheim--Modelling_09.png">
 +
                </div>
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        This factor expressed the total production of new phages that survive long enough to produce new
 +
                        phages. We found the exchange rate that maximizes this factor, and used it our experimental system
 +
                        (see applied results below).
 +
                        <br><br><br>
 +
                        In addition to evolving phages, we also needed to evolve resistant bacteria for control testing
 +
                        in a timely fashion. In this case, the quantity to be maximized is the total division rate of
 +
                        bacteria µS. We also found the exchange rate that maximizes this factor and used it to evolve a
 +
                        resistant bacteria strain (see applied results below).
 +
                    </p>
 +
                </div>
 +
 +
                <div class="dropdown_collapse">
 +
                    Hide
 +
                </div>
 +
            </div>
 +
        </div>
 +
 +
 +
        <div class="break_2">
 +
            <img src="https://static.igem.org/mediawiki/2017/5/52/T--NTNU_Trondheim--splitter_2.svg">
 +
        </div>
 +
 +
        <div class="paragraph_no_img">
 +
            <h1>Applied results:</h1>
 +
            <p>
 +
                We used our mathematical model and numerical simulations to maximize the efficiency of our wetlab system.
 +
                We determined the optimal exchange rate of a chemostat to maximize various desired qualities, and utilized
 +
                our results in implementing our physical project.
 +
            </p>
 +
        </div>
 +
 +
        <div class="dropdown_paragraph">
 +
            <div class="slidedown_button">
 +
                <p class="show_more">Show more</p>
 +
                <img src="https://static.igem.org/mediawiki/2017/7/72/T--NTNU_Trondheim--arrow_down_grey.png">
 +
                <p class="show_less">Show less</p>
 +
            </div>
 +
            <div class="dropdown_text">
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        To quickly evolve phage-resistant bacteria, we plotted the total division rate of the bacteria
 +
                        as a function of the exchange rate.
 +
                    </p>
 +
                </div>
 +
 +
                <div class="image" style="width: 50%;margin-top: 5em">
 +
                    <!-- The width of the page the picture will occupy. The height is calculated from it to honor the source dimensions. Should NOT exceed 70%-->
 +
                    <!-- margin-top and margin-bottom should be set to reach a suitable amount of whitespace, depending on the image location. 0 by default -->
 +
                    <img src="https://static.igem.org/mediawiki/2017/9/9b/T--NTNU_Trondheim--Modelling_10.png">
 +
                    <p><b>Fig. 3</b> Maximizing the total bacterial division rate as a function of exchange rate. A maximum occurs at around 1.25 h<sup>-1</sup>.</p>
 +
                </div>
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        Fig. 3 shows this plot. There is clearly a maximum around an exchange rate of 1.25 h<sup>-1</sup>.
 +
                        This should maximize the speed at which bacteria develop resistance to a phage in the chemostat.
 +
                        <br><br>
 +
                        However we also wanted to check that this exchange rate would not cause any problems. The photometer
 +
                        we made to measure bacterial concentration (see hardware) was less sensitive at lower concentrations
 +
                        (OD600), so wanted to make sure the OD600 would not be too low at this exchange rate. We also wanted
 +
                        to make sure the system would not take too long to come to steady state.
 +
                    </p>
 +
                </div>
 +
 +
                <div class="image" style="width: 50%;margin-top: 5em">
 +
                    <!-- The width of the page the picture will occupy. The height is calculated from it to honor the source dimensions. Should NOT exceed 70%-->
 +
                    <!-- margin-top and margin-bottom should be set to reach a suitable amount of whitespace, depending on the image location. 0 by default -->
 +
                    <img src="https://static.igem.org/mediawiki/2017/e/ec/T--NTNU_Trondheim--Modelling_11.png">
 +
                    <p><b>Fig. 4</b> Steady-state OD600 and time to reach steady-state plotted as functions of the exchange rate. </p>
 +
                </div>
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        Fig. 4 shows that these concerns were unwarranted at an exchange rate of around 1.25 h<sup>-1</sup>, with
 +
                        an equilibrium OD600 of 1.4, and equilibrium reached after <20h.  We also see at an exchange rate
 +
                        above 1.8 h<sup>-1</sup>, the bacteria are unable to keep up and are washed out. For these reasons, and
 +
                        exchange rate very close to the theoretical optimum of 1.25 was utilized when implementing our
 +
                        physical project.
 +
                        <br><br><br>
 +
                        After obtaining phage-resistant bacteria, we wanted to determine the best exchange rate for
 +
                        evolving a phage to overcome this resistance. Using the quantity determined to maximize this
 +
                        (see modelling chemostats above), we maximized this quantity.
 +
                    </p>
 +
                </div>
 +
 +
                <div class="image" style="width: 50%;margin-top: 5em">
 +
                    <!-- The width of the page the picture will occupy. The height is calculated from it to honor the source dimensions. Should NOT exceed 70%-->
 +
                    <!-- margin-top and margin-bottom should be set to reach a suitable amount of whitespace, depending on the image location. 0 by default -->
 +
                    <img src="https://static.igem.org/mediawiki/2017/c/cf/T--NTNU_Trondheim--Modelling_12.png">
 +
                    <p><b>Fig. 5</b> Total number of phages pr. hour that survive long enough to produce new phages as a function of exchange rate. Numbers at steady state.</p>
 +
                </div>
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        Fig. 5 shows that the optimum exchange rate of phage evolution is significantly higher than for
 +
                        bacterial evolution; around 2.0. The exchange rate here can be above the washout exchange rate in
 +
                        Fig. 4 because bacteria are being continuously pumped into the chemostat. This exchange rate was
 +
                        utilized when implementing our physical project.
 +
                    </p>
 +
                </div>
 +
 +
                <div class="dropdown_collapse">
 +
                    Hide
 +
                </div>
 +
            </div>
 +
        </div>
 +
 +
 +
        <div class="break_1">
 +
            <img src="https://static.igem.org/mediawiki/2017/6/6d/T--NTNU_Trondheim--splitter_1.svg">
 +
        </div>
 +
 +
        <div class="paragraph_no_img">
 +
            <h1>Constants list</h1>
 +
            <p>
 +
                The constants we used for modelling were chosen by a mix of reviewing previous research, empirical
 +
                observations, and considerations of what our system was physically capable of. Some of the constants
 +
                are not tested as thoroughly as we would have liked due to time limitations. A more thorough exploration
 +
                of how these constants are interconnected and influence our simulations would be an interesting topic of
 +
                further research.
 +
            </p>
 +
        </div>
 +
 +
        <div class="dropdown_paragraph">
 +
            <div class="slidedown_button">
 +
                <p class="show_more">Show more</p>
 +
                <img src="https://static.igem.org/mediawiki/2017/7/72/T--NTNU_Trondheim--arrow_down_grey.png">
 +
                <p class="show_less">Show less</p>
 +
            </div>
 +
            <div class="dropdown_text">
 +
 +
                <div class="paragraph_no_img">
 +
                    <p>
 +
                        <b>Table 1.</b> Important modelling constants. These values were generally used as defaults
 +
                        during simulation.
 +
                    </p>
 +
                    <table border="1">
 +
                        <tr>
 +
                            <td>Chemostat volume (L)</td>
 +
                            <td>400</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td>Limiting nutrient inflow concentration (mg/L)</td>
 +
                            <td>70</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td>Stoichiometric conversion nutrient to bacterial mass</td>
 +
                            <td>4.0*10<sup>-15</sup></td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td>Maximum bacterial growth rate (/h)</td>
 +
                            <td>2.5</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td>Michaelis-Menten constant (mg/L)</td>
 +
                            <td>25</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td>Inflow bacterial concentration (/L)</td>
 +
                            <td>3.0*10<sup>10</sup></td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td>Phage adsorption rate (phage<sup>-1</sup>cell<sup>-1</sup>mL<sup>-1</sup>h<sup>-1</sup>)</td>
 +
                            <td>6.0*10<sup>-9</sup></td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td>phage burst size </td>
 +
                            <td>100</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td>average lysis time (h)</td>
 +
                            <td>1.0</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td>Standard deviation of lysis time (h)</td>
 +
                            <td>0.05</td>
 +
                        </tr>
 +
                    </table>
 +
                    <p>
 +
                        <br><br>
 +
                        Bacterial kinetic constants were set by examining previous research (2) and empirical
 +
                        considerations of observation of the bacteria we used. Phage constants were set by examining
 +
                        previous research (3) and observation of the phages we used.
 +
                    </p>
 +
                </div>
 +
                <div class="dropdown_collapse">
 +
                    Hide
 +
                </div>
 +
            </div>
 +
        </div>
 +
 +
 +
        <div class="break_2">
 +
            <img src="https://static.igem.org/mediawiki/2017/5/52/T--NTNU_Trondheim--splitter_2.svg">
 +
        </div>
 +
 +
        <div class="paragraph_no_img">
 +
            <h1>References</h1>
 +
            <ol>
 +
                <li>Cairns, Timms, Jansen, Connerton, Payne; “Quantitative Models of In Vitro Bacteriophage–Host Dynamics and Their Application to Phage Therapy”, PLOS pathogens, published Jan. 2, 2009. http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1000253, accessed 01/11/17</li>
 +
                <br>
 +
                <li>Schule, Lipe; “Relationship between substrate concentration, growth rate, and respiration rate of Escherichia coli in continuous culture”, Archives of microbiology, March 1964, Issue 1, pp 1-20.</li>
 +
                <br>
 +
                <li>Shao, Wang; “Bacteriophage Adsorption Rate and Optimal Lysis Time”, Genetics, 2008 Sep; 180(1): 471–482.</li>
 +
            </ol>
 +
        </div>
 +
 +
 +
        <div class="footer">
 +
            <img src="https://static.igem.org/mediawiki/2017/7/7c/T--NTNU_Trondheim--splitter_footer.svg">
 +
            <div class="footer_content">
 +
                <div class="sponsors">
 +
                    <a href="https://www.ntnu.edu/nv" target="_blank">
 +
                        <img src="https://static.igem.org/mediawiki/2017/e/e1/T--NTNU_Trondheim--Faculty_logo_black.png">
 +
                    </a>
 +
<a href="http://www.ntnu.edu/ibt" target="_blank">
 +
                        <img src="https://static.igem.org/mediawiki/2017/8/83/T--NTNU_Trondheim--Instituttlogo_english_white.png">
 +
                    </a>
 +
                    <a href="http://aquagen.no/en/" target="_blank">
 +
                        <img src="https://static.igem.org/mediawiki/2017/2/27/T--NTNU_Trondheim--AquaGen_forslag1_transparent.png">
 +
                    </a>
 +
                    <a href="http://www.biokjemisk.no/" target="_blank">
 +
                        <img src="https://static.igem.org/mediawiki/2017/f/f4/T--NTNU_Trondheim--NBS_forslag1_transparent.png">
 +
                    </a>
 +
                    <a href="http://www.imr.no/en" target="_blank">
 +
                        <img src="https://static.igem.org/mediawiki/2017/e/e4/T--NTNU_Trondheim--Havforskningsinstituttet_white.png">
 +
                    </a>
 +
<a href="http://www.vectronbiosolutions.com/" target="_blank">
 +
                        <img src="https://static.igem.org/mediawiki/2017/8/86/T--NTNU_Trondheim--Vectron_forslag1_transparent.png">
 +
                    </a>
 +
<a href="http://digitallifenorway.org/gb/" target="_blank">
 +
                        <img src="https://static.igem.org/mediawiki/2017/d/da/T--NTNU_Trondheim--SDL_LOGO_ENG_confirmed_version2.png">
 +
                    </a>
 +
                    <a href="https://www.skretting.com/en-us/" target="_blank">
 +
                        <img src="https://static.igem.org/mediawiki/2017/4/4d/T--NTNU_Trondheim--Skretting_logo_black.png">
 +
                    </a>
 +
</div>
 +
                <div class="sosial_media">
 +
                    <a href="mailto:igem-team@ntnu.no" >
 +
                        <img src="https://static.igem.org/mediawiki/2017/5/5a/T--NTNU_Trondheim--mail.png">
 +
                    </a>
 +
                    <a href="http://www.facebook.com/igemntnu2017/" target="_blank">
 +
                        <img src="https://static.igem.org/mediawiki/2017/8/8b/T--NTNU_Trondheim--facebook.png">
 +
                    </a>
 +
                    <a href="http://twitter.com/ntnuigem?lang=en/" target="_blank">
 +
                        <img src="https://static.igem.org/mediawiki/2017/8/8b/T--NTNU_Trondheim--twitter.png">
 +
                    </a>
 +
                    <a href="http://www.instagram.com/ntnu_igem/" target="_blank">
 +
                        <img src="https://static.igem.org/mediawiki/2017/6/64/T--NTNU_Trondheim--instagram.png">
 +
                    </a>
 +
                    <p>
 +
                        Email: igem-team@ntnu.no
 +
                    </p>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </div>
 +
 +
</div>
 +
</body>
 
</html>
 
</html>

Latest revision as of 03:07, 2 November 2017

What did our model achieve?

We achieved two main goals;

We designed a mathematical model for phage-bacteria interaction. This work expands upon existing models to encompass variation in lysis timing of phages.

We applied our mathematical model to our chemostat system and determined ideal parameters for our experimental project. We then utilized these parameters when implementing our physical system (see results below).

All our code is available on our Wiki. Se functions.cpp, classes.cpp, header.h and main.cpp.

Modelling phages

Phages are infectious viruses that kill certain bacteria. When a phage finds a bacterium to infect, it attaches and inserts itself into the bacterium, and hijacks the bacterium’s cellular machinery to create lots of copies of itself. After a short period, the new phage particles will burst out of the now dead bacterium (lysis), ready to infect new bacteria. We used existing mathematical models of this interaction, and expanded upon them.

Modelling chemostats

Our motivation for modelling phage-bacteria interactions is to provide our wet lab with appropriate parameters for accomplishing our goal. That is, using our chemostat system to evolve a phage capable of killing a select strain of bacteria. We described our system mathematically and wrote a C++ program to numerically solve the system of integro-differential equations. Matlab was used for plotting. Using this, we determined parameters to optimally evolve a capable phage and test out project.

Applied results:

We used our mathematical model and numerical simulations to maximize the efficiency of our wetlab system. We determined the optimal exchange rate of a chemostat to maximize various desired qualities, and utilized our results in implementing our physical project.

Constants list

The constants we used for modelling were chosen by a mix of reviewing previous research, empirical observations, and considerations of what our system was physically capable of. Some of the constants are not tested as thoroughly as we would have liked due to time limitations. A more thorough exploration of how these constants are interconnected and influence our simulations would be an interesting topic of further research.

References

  1. Cairns, Timms, Jansen, Connerton, Payne; “Quantitative Models of In Vitro Bacteriophage–Host Dynamics and Their Application to Phage Therapy”, PLOS pathogens, published Jan. 2, 2009. http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1000253, accessed 01/11/17

  2. Schule, Lipe; “Relationship between substrate concentration, growth rate, and respiration rate of Escherichia coli in continuous culture”, Archives of microbiology, March 1964, Issue 1, pp 1-20.

  3. Shao, Wang; “Bacteriophage Adsorption Rate and Optimal Lysis Time”, Genetics, 2008 Sep; 180(1): 471–482.