Francischlin (Talk | contribs) |
Francischlin (Talk | contribs) |
||
Line 18: | Line 18: | ||
padding: 0; | padding: 0; | ||
overflow-x: hidden; | overflow-x: hidden; | ||
+ | height: 100vh; | ||
} | } | ||
Line 28: | Line 29: | ||
background: white; | background: white; | ||
width: 100vw; | width: 100vw; | ||
− | height: | + | height: 50px; |
} | } | ||
+ | |||
+ | .line{ | ||
+ | position: relative; | ||
+ | left: 10vw; | ||
+ | top: 10vmax; | ||
+ | } | ||
+ | |||
+ | p { | ||
+ | text-align: justify; | ||
+ | font-size: 1.3em !important; | ||
+ | font-family: Arial, sans-serif; | ||
+ | margin: 10px 0 0; | ||
+ | } | ||
+ | |||
+ | @font-face { | ||
+ | font-family: neo_latina; | ||
+ | src: url(https://static.igem.org/mediawiki/2017/4/46/Neo-latina-demo-FFP.ttf); | ||
+ | } | ||
+ | |||
+ | .subtitle>h6{ | ||
+ | font-family: neo_latina; | ||
+ | font-size: 2.6em; | ||
+ | position: relative; | ||
+ | left: 25px; | ||
+ | margin-top: 50px; | ||
+ | margin-bottom: 10px; | ||
+ | } | ||
+ | |||
+ | .subtitle>h5{ | ||
+ | font-family: neo_latina; | ||
+ | font-size: 1.3em; | ||
+ | position: relative; | ||
+ | left: 50px; | ||
+ | margin-top: -10px; | ||
+ | margin-bottom: 10px; | ||
+ | } | ||
+ | |||
+ | .improve_content{ | ||
+ | margin: 10vh 10vw 0vh; | ||
+ | } | ||
+ | /*----------------------------------------------------------------------------*/ | ||
+ | /*----------------------------------------------------------------------------*/ | ||
+ | |||
.hyperlink{ | .hyperlink{ | ||
Line 168: | Line 212: | ||
left: 71.2vw; | left: 71.2vw; | ||
} | } | ||
+ | /*----------------------------------------------------------------------------*/ | ||
+ | /*----------------------------------------------------------------------------*/ | ||
+ | .NCTU2016, .hpAg_activity{ | ||
+ | border-width: 2px; | ||
+ | border-style: solid; | ||
+ | border-color: #85CFEA; | ||
+ | position: relative; | ||
+ | margin-top: 0px; | ||
+ | margin-bottom: 100px; | ||
+ | } | ||
+ | |||
+ | .show, .show2{ | ||
+ | margin: 1vw 2vw; | ||
+ | } | ||
+ | |||
+ | .hide, .hide2{ | ||
+ | display: none; | ||
+ | margin: 1vw 2vw; | ||
+ | } | ||
+ | |||
+ | .show_pic, .hide_pic, .show2_pic, .hide2_pic{ | ||
+ | cursor: pointer; | ||
+ | width: 100px; | ||
+ | -webkit-transition: all 0.5s; | ||
+ | -moz-transition: all 0.5s; | ||
+ | -o-transition: all 0.5s; | ||
+ | -ms-transition: all 0.5s; | ||
+ | transition: all 0.5s; | ||
+ | } | ||
+ | |||
+ | .show_pic:hover, .hide_pic:hover, .show2_pic:hover, .hide2_pic:hover{ | ||
+ | width: 130px; | ||
+ | } | ||
+ | |||
+ | .show>ol>li, .show2>ol>li{ | ||
+ | font-size: 1.2em; | ||
+ | position: relative; | ||
+ | left: 20px; | ||
+ | } | ||
+ | |||
+ | .hide>h1, .hide2>h1{ | ||
+ | margin-top: 5vw; | ||
+ | } | ||
+ | |||
+ | .hide>ul>li, .hide2ul>li{ | ||
+ | font-size: 1.2em; | ||
+ | position: relative; | ||
+ | left: 20px; | ||
+ | } | ||
+ | |||
+ | .hide>img{ | ||
+ | margin-bottom: 50px; | ||
+ | } | ||
+ | |||
+ | |||
+ | /*----------------------------------------------------------------------------*/ | ||
+ | /*----------------------------------------------------------------------------*/ | ||
+ | /*----------------------------------------------------------------------------*/ | ||
+ | /*----------------------------------------------------------------------------*/ | ||
</style> | </style> | ||
<!-----------------------------------------------------------------------------> | <!-----------------------------------------------------------------------------> | ||
<script> | <script> | ||
+ | $(document).ready(function(){ | ||
+ | $(".show_pic").click(function(){ | ||
+ | $(".hide").show(500); | ||
+ | $(".show").hide(); | ||
+ | }); | ||
+ | }); | ||
+ | |||
+ | $(document).ready(function(){ | ||
+ | $(".hide_pic").click(function(){ | ||
+ | $(".hide").hide(); | ||
+ | $(".show").show(500); | ||
+ | }); | ||
+ | }); | ||
+ | |||
+ | $(document).ready(function(){ | ||
+ | $(".show2_pic").click(function(){ | ||
+ | $(".hide2").show(500); | ||
+ | $(".show2").hide(); | ||
+ | }); | ||
+ | }); | ||
+ | |||
+ | $(document).ready(function(){ | ||
+ | $(".hide2_pic").click(function(){ | ||
+ | $(".hide2").hide(); | ||
+ | $(".show2").show(500); | ||
+ | }); | ||
+ | }); | ||
</script> | </script> | ||
Line 202: | Line 332: | ||
<div class="second_line"><img src="https://static.igem.org/mediawiki/2017/3/31/Hyperproject_line.png" width="24%"></div> | <div class="second_line"><img src="https://static.igem.org/mediawiki/2017/3/31/Hyperproject_line.png" width="24%"></div> | ||
</div> | </div> | ||
+ | <!-----------------------------------------------------------------------------> | ||
+ | <div class="improve_content"> | ||
+ | <!-----------------------------------------------------------------------------> | ||
+ | |||
+ | <div id="NCTU2016"> | ||
+ | <div class="subtitle"> | ||
+ | <h6>Improvement - Finding more pest-resistant candidates for NCTU_Formosa </h6> | ||
+ | <h5>- using the same method SCM to build pest-resistant peptide prediction system</h5> | ||
+ | </div> | ||
+ | |||
+ | <div class="NCTU2016"> | ||
+ | <div class="show"> | ||
+ | <p> | ||
+ | To improve the project of NCTU_Formosa 2016, we applied SCM to make an insecticidal peptide prediction system, using a quicker way to search for their target peptides and leaving them a group of potential target peptides. | ||
+ | </p> | ||
+ | <ol>Content: | ||
+ | <li>Datasets</li> | ||
+ | <li>Results and the candidates we suggested</li> | ||
+ | </ol> | ||
+ | |||
+ | <div><img class="show_pic" src="https://static.igem.org/mediawiki/2017/4/4f/Ptp_hide.png" style="display:block; margin:auto;"></div> | ||
+ | </div> | ||
+ | <div class="hide"> | ||
+ | <p> | ||
+ | The way we use SCM to cure fungal diseases is just a part for its ability. In fact, the peptide prediction system based on the SCM can be specialized in different cases of evaluating sequences. | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | We decided to apply the method to NCTU_Formosa 2016, which utilized spider toxin to kill the pests. We introduced the scoring card to the insecticidal protein to see whether we could also predict invertebrate proteins from | ||
+ | ion channel impairing toxins, improving their searching tool while finding more candidates for the project last year. | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | First, we collected the insecticidal and ion channel impairing toxins by <span><a href="https://2016.igem.org/Team:NCTU_Formosa/Model#title1" target="_blank">2016 selection database</a></span>. After | ||
+ | deleting peptides which contained non-standard amino acids, we randomly chose positive and negative data to our datasets and divided them into two datasets, training datasets and testing datasets. | ||
+ | </p> | ||
+ | |||
+ | <p>一張表格</p> | ||
+ | |||
+ | <p> | ||
+ | For training parts, after initializing the first scorecard, we used IGA to optimize the scorecard for ten generations. | ||
+ | </p> | ||
+ | |||
+ | <h2>Results</h2> | ||
+ | |||
+ | <p> | ||
+ | FullTrain_acc=91.70454568181819<br> CV acc(train)=93.8636343698348<br> CV auc(train)=95.44599143143164<br> Best | ||
+ | theshold=498.75<br> Best_acc(test)=88.86363681818182 | ||
+ | <br> Sensitivity(test)=0.7031249936523439 | ||
+ | <br> Specitivity(test)=0.9202127637222726 | ||
+ | <br> | ||
+ | </p> | ||
+ | |||
+ | <p>一張表格</p> | ||
+ | <p>一張表格</p> | ||
+ | |||
+ | <h2>Discussion</h2> | ||
+ | |||
+ | <p> | ||
+ | To improve the project of NCTU_Formosa 2016, we introduced the scoring card method to the insecticidal proteins. By using the method, we can predict more new insecticidal proteins. | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | We collected about three thousands of ion channel impairing toxins. | ||
+ | </p> | ||
+ | |||
+ | <p> | ||
+ | Below is the excerpt of the peptide list. | ||
+ | |||
+ | </p> | ||
+ | |||
+ | <p>一個表格</p> | ||
+ | |||
+ | <div><img class="hide_pic" src="https://static.igem.org/mediawiki/2017/c/cb/Ptp_show.png" style="display:block; margin:auto;"></div> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | </div> | ||
+ | <!-----------------------------------------------------------------------------> | ||
+ | |||
+ | <div id="ntnu2016"> | ||
+ | <div class="subtitle"> | ||
+ | |||
+ | |||
+ | <div class="ntnu2016"> | ||
+ | <div class="show"> | ||
+ | |||
+ | <div><img class="show_pic" src="https://static.igem.org/mediawiki/2017/4/4f/Ptp_hide.png" style="display:block; margin:auto;"></div> | ||
+ | </div> | ||
+ | <div class="hide"> | ||
+ | |||
+ | <div><img class="hide_pic" src="https://static.igem.org/mediawiki/2017/c/cb/Ptp_show.png" style="display:block; margin:auto;"></div> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | </div> | ||
+ | <!-----------------------------------------------------------------------------> | ||
+ | |||
+ | |||
+ | <div id="fut"></div> | ||
− | |||
− | |||
</body> | </body> | ||
</html> | </html> | ||
{{NCTU_Formosa/Footer}} | {{NCTU_Formosa/Footer}} |
Revision as of 03:40, 29 October 2017
Improvement - Finding more pest-resistant candidates for NCTU_Formosa
- using the same method SCM to build pest-resistant peptide prediction system
To improve the project of NCTU_Formosa 2016, we applied SCM to make an insecticidal peptide prediction system, using a quicker way to search for their target peptides and leaving them a group of potential target peptides.
- Content:
- Datasets
- Results and the candidates we suggested
The way we use SCM to cure fungal diseases is just a part for its ability. In fact, the peptide prediction system based on the SCM can be specialized in different cases of evaluating sequences.
We decided to apply the method to NCTU_Formosa 2016, which utilized spider toxin to kill the pests. We introduced the scoring card to the insecticidal protein to see whether we could also predict invertebrate proteins from ion channel impairing toxins, improving their searching tool while finding more candidates for the project last year.
First, we collected the insecticidal and ion channel impairing toxins by 2016 selection database. After deleting peptides which contained non-standard amino acids, we randomly chose positive and negative data to our datasets and divided them into two datasets, training datasets and testing datasets.
一張表格
For training parts, after initializing the first scorecard, we used IGA to optimize the scorecard for ten generations.
Results
FullTrain_acc=91.70454568181819
CV acc(train)=93.8636343698348
CV auc(train)=95.44599143143164
Best
theshold=498.75
Best_acc(test)=88.86363681818182
Sensitivity(test)=0.7031249936523439
Specitivity(test)=0.9202127637222726
一張表格
一張表格
Discussion
To improve the project of NCTU_Formosa 2016, we introduced the scoring card method to the insecticidal proteins. By using the method, we can predict more new insecticidal proteins.
We collected about three thousands of ion channel impairing toxins.
Below is the excerpt of the peptide list.
一個表格